【題目】在平面直角坐標系中,拋物線與軸的負半軸交于點、與軸交于點,且.
(1)求的值;
(2)如果點是拋物線上一點,聯(lián)結(jié)交軸正半軸于點,,求的坐標.
【答案】(1)1 (2)(4,12)
【解析】
(1)先根據(jù)y軸上點的坐標特征確定B(0,-4),再利用勾股定理計算出OA=2,則A點坐標為(-2,0),然后把A點坐標代入y=ax2-4求出a的值即可得到拋物線解析式;
(2)作PH⊥x軸于點H,則AH=x+3,PH∥BC,根據(jù)平行線分線段成比例定理求出點P的橫坐標,進而可求出點P的坐標.
(1)當x=0時,y=ax2-4=-4,則B(0,-4),所以OB=4,
在Rt△OAB中,OA= =2,
∴A點坐標為(-2,0),
把A(-2,0)代入y=ax2-4得4a-4=0,
解得a=1;
(2∵a=1,
∴拋物線解析式為y=x2-4.
設P(x,x2-4).
∵,
∴,
作PH⊥x軸于點H,則AH=x+3,PH∥BC,
∴,
∴,
∴x=4,
∴y= x2-4=12,
∴P(4,12).
科目:初中數(shù)學 來源: 題型:
【題目】“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自2015年起逐月增加,據(jù)統(tǒng)計,該商城1月份銷售自行車64輛,3月份銷售了100輛.
(1)若該商城前4個月的自行車銷量的月平均增長率相同,問該商城4月份賣出多少輛自行車.
(2)考慮到自行車需求不斷增加,該商城準備投入3萬元再購進一批兩種規(guī)格的自行車,已知型車的進價為500元/輛,售價為700元/輛,型車進價為1000元/輛,售價為1300元/輛.根據(jù)銷售經(jīng)驗,型車進貨量不少于型車的2倍,但不超過型車的2.8倍.假設所進車輛全部售完,為使利潤最大,該商城應如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電商平臺長期銷售A型商品,2017年以4800元購進該型號商品并且全部售完;2019年,這種型號的商品的進價比2017年下降了9元/件,該平臺用3000元購進了與2017年相同數(shù)量的該A型商品也全部售完,這兩年A型商品的售價均為40元/件.
(1)2017年A型商品的進價是多少元/件?
(2)若該電商平臺每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓O的半徑為1,是圓O的內(nèi)接等邊三角形,點D.E在圓上,四邊形EBCD為矩形,這個矩形的面積是_____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在解決數(shù)學問題時,我們常常從特殊入手,猜想結(jié)論,并嘗試發(fā)現(xiàn)解決問題的策略與方法.
(問題提出)
求證:如果一個定圓的內(nèi)接四邊形對角線互相垂直,那么這個四邊形的對邊的平方和是一個定值.
(從特殊入手)
我們不妨設定圓O的半徑是R,⊙O的內(nèi)接四邊形ABCD中,AC⊥BD.
請你在圖①中補全特殊殊位置時的圖形,并借助于所畫圖形探究問題的結(jié)論.
(問題解決)
已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, AC⊥BD.
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在等腰梯形中,,E為上一點,且AE:DE=1:3,聯(lián)結(jié)和,與交于點F,如果,。
(1)求梯形的周長
(2)求線段CF的長度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說明理由;
(2)過點B作⊙O的切線BE交直線CD于點E,若BE=5,CD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“童舒”童裝商場某種童裝進價為每件60元,當售價為每件100元時,每天可賣出120件:童裝的售價每上漲1元,則每天少賣2件.為了讓利于顧客,商場規(guī)定銷售這種重裝時利潤率不能超過90%,則當每件童裝的售價定為多少元時,商場銷售此種童裝時每天可獲得最大利潤?每天的最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com