精英家教網如圖,△ABC為等邊三角形,且BM=CN,AM與BN相交于點P,則∠APN=( 。
A、等于70°B、等于60°C、等于50°D、大小不確定
分析:易證△ABM≌△BCN,得∠BAM=∠CBN,再根據(jù)∠APN=∠BAM+∠ABN,即可求得∠APN=∠CBN+∠ABN=∠ABC,即可解題.
解答:解:在△ABM和△BCN中,
AB=BC
∠ABM=∠BCN
BM=CN
,
∴△ABM≌△BCN,
∵∠APN=∠BAM+∠ABN,
∴∠APN=∠CBN+∠ABN=∠ABC=60°.
故選B.
點評:本題考查了全等三角形的證明和全等三角形對應角相等的性質,等邊三角形各內角為60°的性質,本題中求得△ABM≌△BCN是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,△ABC為等邊三角形,P為三角形內一點,將△ABP繞A點逆時針旋轉60°后與△ACP′重合,若AP=3,則PP′=
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,△ABC為等邊三角形,D、F分別為BC、AB上的點,且CD=BF,以AD為邊作等邊△ADE.
(1)求證:△ACD≌△CBF;
(2)點D在線段BC上何處時,四邊形CDEF是平行四邊形且∠DEF=30°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD與Q,PQ=4,PE=1
(1)求證∠BPQ=60°
(2)求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC為等邊三角形,D、F分別為CB、BA上的點,且CD=BF,以AD為一邊作等邊三角形ADE.
①△ACD與△CBF是全等三角形嗎?說說你的理由.
②ED=FC嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC為等邊△,EC=ED,∠CED=120゜,P為BD的中點,求證:AE=2PE.

查看答案和解析>>

同步練習冊答案