如圖,在平面直角坐標(biāo)系中,點P從原點O出發(fā),沿x軸向右以每秒一個單位長的速度運動t秒(t>0),拋物線y=-x2+bx經(jīng)過點O和點P.已知矩形ABCD的三個頂點為A(1,0),B(3,0),D(1,3).
(1)求b的值(用t的代數(shù)式表示);
(2)當(dāng)3<t<4時,設(shè)拋物線分別與線段AD,BC交于點M,N.
①設(shè)直線MP的解析式為y=kx+m,在點P的運動過程中,你認(rèn)為k的大小是否會變化?若變化,請說明理由;若不變,請求出k的值;
②在點P的運動過程中,當(dāng)OM⊥MN時,求出t的值;
(3)在點P的運動過程中,若拋物線與矩形ABCD的四條邊有四個交點,請直接寫出t的取值范圍.

解:(1)∵點P的坐標(biāo)為(t,0),
∴0=-t2+bt,解得:b=t,
(2)①把x=1代入y=-x2+tx,
得y=t-1,即M(1,t-1),
,解得k=-1,
②如圖,過點N作NH⊥AD于點H,
求得:BN=3t-9,MH=8-2t,HN=AB=2,
當(dāng)OM⊥MN時,可證得△OAM∽△MHN,
故可得,即,
解得,(舍去)
從而可得:
(3)拋物線的解析式為y=-x2+bx=-(x-2+,
①因為拋物線的頂點縱坐標(biāo)大于點D和點C的縱坐標(biāo),所以>3,
解得b>2或b<-2
②當(dāng)x=1時,y=-1+b<3,
解得:b<4,
綜上可得:2<b<4.
分析:(1)將點P的坐標(biāo)代入可得b的值.
(2)①將點M的橫坐標(biāo)x=1代入解析式,可得出點M的坐標(biāo),將M、P的坐標(biāo)代入,得出方程組,解出即可得出k的值.
②過點N作NH⊥AD于點H,分別表示出BN、MH、HN,根據(jù)當(dāng)OM⊥MN時,可證得△OAM∽△MHN,從而利用相似三角形的對應(yīng)邊成比例得出t的值.
(3)找兩個極值點,①拋物線的頂點縱坐標(biāo)一定要大于點C和點D的縱坐標(biāo),②當(dāng)x=1時,拋物線的縱坐標(biāo)一定不能超過點D的縱坐標(biāo).
點評:此題屬于二次函數(shù)綜合題,涉及了待定系數(shù)法求函數(shù)解析式及相似三角形的判定與性質(zhì),難點在第三問,關(guān)鍵在于兩個極值點的尋找.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案