9.用適當(dāng)?shù)姆椒ń夥匠蹋簒2=2x+35.

分析 先把方程化為一般式,然后利用因式分解法解方程.

解答 解:x2-2x-35=0,
(x-7)(x+5)=0,
x-7=0或x+5=0,
所以x1=7,x2=-5.

點(diǎn)評(píng) 本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過(guò)因式分解化為兩個(gè)一次因式的積的形式,那么這兩個(gè)因式的值就都有可能為0,這就能得到兩個(gè)一元一次方程的解,這樣也就把原方程進(jìn)行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問(wèn)題了(數(shù)學(xué)轉(zhuǎn)化思想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”(如圖所示)就是一例.

這個(gè)三角形的構(gòu)造法則為:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和.事實(shí)上,這個(gè)三角形給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+ab+b2展開式中各項(xiàng)的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2+b3展開式中各項(xiàng)的系數(shù)等等.根據(jù)上面的規(guī)律,(a+b)4的展開式中各項(xiàng)系數(shù)最大的數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,在Rt△ABC中,∠C=90°,∠A=30°,E為AB上一點(diǎn),且AE:EB=4:1,EF⊥AC于F,連結(jié)FB,則tan∠CFB的值等于( 。
A.$\frac{5\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.5$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.解方程:x2+10x+16=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,DE∥BC,且過(guò)△ABC的重心,分別與AB、AC交于點(diǎn)D、E,點(diǎn)P是線段DE上一點(diǎn),CP的延長(zhǎng)線交AB于點(diǎn)Q,如果$\frac{DP}{DE}$=$\frac{1}{4}$,那么S△DPQ:S△CPE的值是1:15.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若代數(shù)式xy2與-3xm-1y2n的和是-2xy2,則2m+n的值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示的幾何體從上面看得到的平面圖形是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在0,|-5|,-(-2),-32各數(shù)中,負(fù)數(shù)的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若a、b兩數(shù)在數(shù)軸上的位置如圖所示,則下列結(jié)論正確的是(  )
A.a+b>0B.a-b<0C.ab>0D.$\frac{a}$>0

查看答案和解析>>

同步練習(xí)冊(cè)答案