下列平面圖形中,哪一個是如圖所示的幾何體的左視圖?( 。
分析:左視圖是從物體的左邊觀察得到的圖形,結合選項進行判斷即可.
解答:解:所給圖形的左視圖包含兩列,第一列有2個正方形,第二列有1個正方形.
故選A.
點評:本題考查了簡單組合體的三視圖,屬于基礎題,解答本題的關鍵是掌握左視圖的定義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

36、在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下-絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內角大小有關.當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.

(1)請根據(jù)下列圖形,填寫表中空格:

(2)如圖,如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形;
(3)正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內角大小有關.當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.
(1)請根據(jù)下列圖形,填寫表中空格:
精英家教網
正多邊形邊數(shù) 3 4 5 6 n
正多邊形每個內角的度數(shù)
 
 
 
 
 
(2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?
(3)從正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年人教版七年級下第七章第三節(jié)多邊形及其內角和(1)練習卷(解析版) 題型:解答題

在日常生活中,觀察各種建筑物的地板,你就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內角大小有關,當圍繞一點拼在一起的多邊形的內角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.

(1)如圖1,請根據(jù)下列圖形,填寫表中空格:

 

      正多邊形邊數(shù)

  3

  4

  5

  6

 …

 

正多邊形每個內角的度數(shù)

 

 

 

 

 

 

(2)如果限于一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?

(3)從正三角形、正方形、正六邊形中選一種,再在其它正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成一個平面圖,并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

請同學們自主完成下列各題。
(1)長方體是一個立體圖形,它是由多少個面、多少條棱、多少個頂點組成的呢?
(2)長方體的各個面是平面圖形還是立體圖形?是什么形狀?長方體中相對的兩個面有什么特殊的位置關系?這兩個面的形狀有什么關系?它們的面積呢?長方體中相鄰的兩個面有什么特殊的位置關系呢?
(3)長方體在同一方向的棱的大小和位置有什么特殊的關系呢?不同方向的棱呢?
(4)每人準備一紙制長方體,現(xiàn)在請將每一組的紙制長方體沿棱剪開,展開成一個完整的平面展開圖,需要剪開多少條棱?
(5)如上圖所示,將其沿棱剪開,所得的平面展開圖是什么樣呢?
(6)你能試著從長方體的平面展開圖中發(fā)現(xiàn)它們的共同特點嗎?
(7)如下圖所示,長方體頂點A處有一只小螞蟻,要沿長方體紙盒的表面爬行到G處,小螞蟻想按照最短的路線爬行,可以省力點,你能幫它找到這條最短的路線嗎?
(8)①先從A到B,再到F,最后到G(沿著三條棱爬行)②先從A到B,再到G;蛳葟腁到F,再到G(沿著一條長方形的對角線和一條棱)這兩種情況,哪條路線較短?
(9)第二條路線是不是就是最短路線呢?同一平面內,兩點間最短的路線是什么,點A和點G是同一平面內嗎?怎樣把它們轉化在同一平面內?
(10)你現(xiàn)在認為螞蟻爬的最短路線還是那是那一條嗎?

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省期末題 題型:解答題

在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內角大小有關.當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.
(1)請根據(jù)下列圖形,填寫表中空格:
(2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形?
(3)從正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

同步練習冊答案