已知二次函數(shù)的圖象以A(-1,4)為頂點,且過點B(2,0)
(1)求該函數(shù)的關(guān)系式;
(2)若將該函數(shù)圖象以頂點為中心旋轉(zhuǎn),求旋轉(zhuǎn)后拋物線的關(guān)系式.
(1)  (2)

試題分析:(1)易知A點為二次函數(shù)的頂點,所以對稱軸=-1,
根據(jù)頂點式可知
把A(-1,4)代入上式得:
代入B(2,0)后,求出a= 。所以該函數(shù)關(guān)系式為
(2)易知以A點為中心旋轉(zhuǎn)后圖像變?yōu)殚_口向上,a值改變?yōu)檎龜?shù)。則 
點評:本題難度中等,主要考查學(xué)生對頂點式的掌握與運用。除了一般式之外,中考中也常會涉及頂點式求函數(shù)系數(shù)等,學(xué)生需要牢固掌握。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線與x軸兩交點分別是(-1,0),(3,0)另有一點(0,-3)也在圖象上,則該拋物線的關(guān)系式________________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是椒江某公園一圓形噴水池,水流在各方向沿形狀相同的拋物線落下。建立如圖所示的坐標系,如果噴頭所在處A(0,1.25),水流路線最高處B(1,2.25),求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線軸相交于點、,且經(jīng)過點(5,4).該拋物線頂點為

(1)求的值和該拋物線頂點的坐標.
(2)求的面積;
(3)若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

三個全等的直角梯形①、②、③在平面直角坐標系中的位置如圖所示,拋物線經(jīng)過梯形的頂點A、B、C、D,已知梯形的兩條底邊長分別為4,6,該拋物線解析式為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

2012年7月6日在湖南省展覽館舉行了長沙動漫展,很多中學(xué)生也對動漫產(chǎn)生了濃厚
的興趣,某動漫公司決定在假期舉行一次中學(xué)生動漫畫展,經(jīng)調(diào)查發(fā)現(xiàn),活動最低票價
為10元,如果以10元票價開放,平均每天有100個學(xué)生來觀看,若票價每提高1元,
則相應(yīng)減少10個參觀者。
(1)(4分)寫出平均每天觀看動漫展的學(xué)生人數(shù)y(單位:人)與票價x (x為整數(shù),單位:元)之間的關(guān)系;
(2)(6分)如果要使每天總收入為910元,票價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示,有下列5個結(jié)論:

;②;③;
;⑤  (
其中正確的結(jié)論有
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本),若每份售價不超過10元,每天可銷售400份;若每份超過10元,每提高1元,每天的銷售量就減少40份,為了便于結(jié)算,每份套餐的售價X(元)取整數(shù),用Y(元)表示該店日凈收入,(日凈收入=每天的銷售額—套餐成本—每天固定支出)
(1)求Y與X之間的函數(shù)關(guān)系式;
(2)若每分套餐的售價不超過10元,要使該店日凈收入不少于800元,那么每份售價最少不低于多少元?
(3)該店既要吸引顧客,使每天銷售量較大,又要有較高的日凈收入。按此要求,每份套餐的售價應(yīng)定為多少元?此時日凈收入為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線y=ax2+bx+c經(jīng)過點(0,―3),(2,―3)且與x軸的一個交點坐標是(―2,0),則與x軸的另一個交點坐標是    

查看答案和解析>>

同步練習(xí)冊答案