如圖所示,已知拋物線y=ax2+bx+c過(guò)點(diǎn)A(-1,0),且經(jīng)過(guò)直線y=x-3與坐標(biāo)軸的兩個(gè)交點(diǎn)B、C.
(1)求拋物線的表達(dá)式;
(2)若點(diǎn)M在第四象限內(nèi)且在拋物線上,有OM⊥BC,垂足為D,求點(diǎn)M的坐標(biāo).
(1)∵y=x-3與x軸的交點(diǎn)B的坐標(biāo)為(3,0),與y軸的交點(diǎn)C的坐標(biāo)為(0,-3),A點(diǎn)坐標(biāo)為(-1,0),
∴設(shè)二次函數(shù)解析式為y=a(x+1)(x-3),
將C(0,-3)代入解析式得,
-3=a×1×(-3),
解得,a=1,
則二次函數(shù)解析式為y=(x+1)(x-3),
即y=x2-2x-3,
(2)∵OD過(guò)原點(diǎn),
∴設(shè)OD的解析式為y=kx,
∵OM⊥BC,BC解析式為y=x-3,
∴kOD=-1,
則OD的解析式為y=-x,
將y=x2-2x-3和y=-x組成方程組得
y=-x
y=x2-2x-3
,
整理得,x2-x-3=0,
解得,x1=
1+
13
2
,x2=
1-
13
2
(不合題意,舍去),
把x1=
1+
13
2
代入y=-x得,
y1=-
1+
13
2
,
∴M點(diǎn)坐標(biāo)為(
1+
13
2
,-
1+
13
2
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,
3
),△AOB的面積是
3

(1)求點(diǎn)B的坐標(biāo);
(2)求過(guò)點(diǎn)A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對(duì)稱軸上是否存在點(diǎn)C,使△AOC的周長(zhǎng)最。咳舸嬖,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在(2)中x軸下方的拋物線上是否存在一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交直線AB于點(diǎn)D,線段OD把△AOB分成兩個(gè)三角形,使其中一個(gè)三角形面積與四邊形BPOD面積比為2:3?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(6)一輛寬6m的貨車要通過(guò)跨度為8m、拱高為4m的單行拋物線隧道(從正中通過(guò)),為了保證安全,車頂離隧道頂部至少要t.6m的距離,貨車的限高為多少?
(6)若將(6)中的單行道改為雙行道,即貨車必須從隧道中線的右側(cè)通過(guò),貨車的限高應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

為解決藥價(jià)虛高給老百姓帶來(lái)的求醫(yī)難的問(wèn)題,國(guó)家決定對(duì)某藥品分兩次降價(jià).若設(shè)平均每次降價(jià)的百分率為x,該藥品的原價(jià)是m元,降價(jià)后的價(jià)格是y元,則y與x的函數(shù)關(guān)系式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D,連接BC,BC與拋物線的對(duì)稱軸交于點(diǎn)E.
(1)求點(diǎn)B、點(diǎn)C的坐標(biāo)和拋物線的對(duì)稱軸;
(2)求直線BC的函數(shù)關(guān)系式;
(3)點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PFDE交拋物線于點(diǎn)F.設(shè)點(diǎn)P的橫坐標(biāo)為m;用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一邊靠校園圍墻,其他三邊用總長(zhǎng)為40米的鐵欄桿圍成一個(gè)矩形花圃,設(shè)矩形ABCD的邊AB為x米,面積為S平方米,要使矩形ABCD面積最大,則x的長(zhǎng)為(  )
A.10米B.15米C.20米D.25米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=4,BC=2,點(diǎn)A、C分別在x軸、y軸上,當(dāng)點(diǎn)A在x軸上運(yùn)動(dòng)時(shí),點(diǎn)C隨之在y軸上運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)B到原點(diǎn)的最大距離是( 。
A.6B.2
6
C.2
5
D.2
2
+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,拋物線y=x2向左平移1個(gè)單位,再向下平移4個(gè)單位,得到拋物線y=(x-h)2+k,所得拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求h、k的值;
(2)判斷△ACD的形狀,并說(shuō)明理由;
(3)在線段AC上是否存在點(diǎn)M,使△AOM與△ABC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y=-x2+4x-3與x軸相交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)坐標(biāo);
(2)在下面的直角坐標(biāo)系內(nèi)畫出此拋物線的簡(jiǎn)圖,并根據(jù)簡(jiǎn)圖寫出當(dāng)x取何值時(shí),函數(shù)值y大于零;
(3)確定此拋物線與直線y=-2x+6公共點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案