精英家教網 > 初中數學 > 題目詳情

a為一元二次方程4x2―x―2008=0的一個根,則=______

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•柳州)如圖,在△ABC中,AB=2,AC=BC=
5

(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標系如圖,請你分別寫出A、B、C三點的坐標;
(2)求過A、B、C三點且以C為頂點的拋物線的解析式;
(3)若D為拋物線上的一動點,當D點坐標為何值時,S△ABD=
1
2
S△ABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點A′B′,與y軸交于點C′,當平移多少個單位時,點C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).
 
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當x1=1時,即y2=1,∴y1=1,y2=-1.
當x2=3,即y2=3,∴y3=
3
,y4=-
3

所以,原方程的解是y1=1,y2=-1,y3=
3
,y4=-
3

再如x2-2=4
x2-2
,可設y=
x2-2
,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數學 來源: 題型:

若x1、x2為一元二次方程ax2+bx+c=0(a≠0)的兩根,則有x1+x2=-
b
a
,x1•x2=
c
a
,根據材料回答問題:若x1、x2是一元二次方程2x2-4x+1=0的兩根,則(x1+1)(x2+1)=
7
2
7
2

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在△ABC中,AB=2,AC=BC=數學公式
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標系如圖,請你分別寫出A、B、C三點的坐標;
(2)求過A、B、C三點且以C為頂點的拋物線的解析式;
(3)若D為拋物線上的一動點,當D點坐標為何值時,S△ABD=數學公式S△ABC
(4)如果將(2)中的拋物線向右平移,且與x軸交于點A′B′,與y軸交于點C′,當平移多少個單位時,點C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).

附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當x1=1時,即y2=1,∴y1=1,y2=-1.
當x2=3,即y2=3,∴y3=數學公式,y4=-數學公式
所以,原方程的解是y1=1,y2=-1,y3=數學公式,y4=-數學公式
再如x2-2=4數學公式,可設y=數學公式,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數學 來源:2012年初中畢業(yè)升學考試(廣西柳州卷)數學(帶解析) 題型:解答題

如圖,在△ABC中,AB=2,AC="BC=" 5 .
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標系如圖,請你分別寫出A、B、C三點的坐標;
(2)求過A、B、C三點且以C為頂點的拋物線的解析式;
(3)若D為拋物線上的一動點,當D點坐標為何值時,S△ABD=S△ABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點A′B′,與y軸交于點C′,當平移多少個單位時,點C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).

附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當x1=1時,即y2=1,∴y1=1,y2=-1.
當x2=3,即y2=3,∴y3=" 3" ,y4="-" 3 .
所以,原方程的解是y1=1,y2=-1,y3=" 3" ,y4="-" 3 .
再如 ,可設 ,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數學 來源:2012年廣西柳州市中考數學試卷(解析版) 題型:解答題

如圖,在△ABC中,AB=2,AC=BC=
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標系如圖,請你分別寫出A、B、C三點的坐標;
(2)求過A、B、C三點且以C為頂點的拋物線的解析式;
(3)若D為拋物線上的一動點,當D點坐標為何值時,S△ABD=S△ABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點A′B′,與y軸交于點C′,當平移多少個單位時,點C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).
 
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當x1=1時,即y2=1,∴y1=1,y2=-1.
當x2=3,即y2=3,∴y3=,y4=-
所以,原方程的解是y1=1,y2=-1,y3=,y4=-
再如x2-2=4,可設y=,用同樣的方法也可求解.

查看答案和解析>>

同步練習冊答案