定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是[2,k-2]的一次函數(shù)為正比例函數(shù),求k的值;
(2)設(shè)點(diǎn)A,B分別為拋物線y=(x+m)(x-2)與x,y軸的交點(diǎn),其中m>0,且△OAB的面積為4,O為原點(diǎn),求圖象過(guò)A,B兩點(diǎn)的一次函數(shù)的特征數(shù).
【答案】分析:(1)根據(jù)題意中特征數(shù)的概念,可得2與k-2的關(guān)系;進(jìn)而可得k的值;
(2)根據(jù)解析式易得拋物線與x軸、y軸的交點(diǎn)的坐標(biāo),又有△OAB的面積為4,可得m的方程,解即可得m的值,進(jìn)而可得答案.
解答:解:(1)∵特征數(shù)為[2,k-2]的一次函數(shù)為y=2x+k-2,
∴k-2=0,
∴k=2;
(2)∵拋物線與x軸的交點(diǎn)為A1(-m,0),A2(2,0),
與y軸的交點(diǎn)為B(0,-2m).
若S△OBA1=4,則•m•2m=4,m=2.
若S△OBA2=4,則•2•2m=4,m=2.
∴當(dāng)m=2時(shí),滿足題設(shè)條件.
∴此時(shí)拋物線為y=(x+2)(x-2).
它與x軸的交點(diǎn)為(-2,0),(2,0),與y軸的交點(diǎn)為(0,-4),
∴一次函數(shù)為y=-2x-4或y=2x-4,
∴特征數(shù)為[-2,-4]或[2,-4].
點(diǎn)評(píng):本題考查學(xué)生根據(jù)一次、二次函數(shù)的性質(zhì),根據(jù)題意,分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、宋朝時(shí),中國(guó)象棋就已經(jīng)風(fēng)靡于全國(guó),中國(guó)象棋規(guī)定馬步為:“”形的對(duì)角線(即一次對(duì)角線為一步),現(xiàn)定義:在棋盤(pán)上從點(diǎn)A到點(diǎn)B,馬走的最少步稱(chēng)為A與B的“馬步距離”,記作dA->B.在圖中畫(huà)出了中國(guó)象棋的一部分,上面標(biāo)有A,B,C,D,E共5個(gè)點(diǎn),則在dA->B,dA->C,dA->D,dA->E中小的是
dA->D
,最小是
2
步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)點(diǎn)(x,y)的一次操作變換記為P1(x,y),定義其變換法則如下:P1(x,y)=(x+y,x-y);且規(guī)定Pn(x,y)=P1(Pn-1(x,y))(n為大于1的整數(shù)).如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2).則P2011(1,-1)=( 。
A、(0,21005B、(0,-21005C、(0,-21006D、(0,21006

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•井研縣模擬)對(duì)點(diǎn)(x,y)的一次操作變換記為P1(x,y),定義其變換法則如下:P1(x,y)=(x+y,x-y);且規(guī)定Pn(x,y)=P1[Pn-1(x,y)](n為大于1的整數(shù)).如P1(1,2)=(3,-1),P2(1,2)=P1[P1(1,2)]=P1(3,-1)=(2,4),P3(1,2)=P1[P2(1,2 )]=P1(2,4)=(6,-2).則P2012(1,-1)=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義一種對(duì)于三位數(shù)abc(a、b、c不完全相同)的“F運(yùn)算”:重排abc的三個(gè)數(shù)位上的數(shù)字,計(jì)算所得最大三位數(shù)和最小三位數(shù)的差(允許百位數(shù)字為零).例如abc=213時(shí),則

(1)求579經(jīng)過(guò)三次“F運(yùn)算”的結(jié)果(要求寫(xiě)出三次“F運(yùn)算”的過(guò)程);
(2)假設(shè)abc中a>b>c,則abc經(jīng)過(guò)一次“F運(yùn)算”得
99(a-c)
99(a-c)
(用代數(shù)式表示);
(3)若任意一個(gè)三位數(shù)經(jīng)過(guò)若干次“F運(yùn)算”都會(huì)得到一個(gè)固定不變的值,那么任意一個(gè)四位數(shù)也經(jīng)過(guò)若干次這樣的“F運(yùn)算”是否會(huì)得到一個(gè)定值?若存在,請(qǐng)直接寫(xiě)出這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義一種對(duì)于三位數(shù)
.
abc
(a、b、c不完全相同)的“F運(yùn)算”:重排
.
abc
的三個(gè)數(shù)位上的數(shù)字,計(jì)算所得最大三位數(shù)和最小三位數(shù)的差(允許百位數(shù)字為零).例如
.
abc
=213
時(shí),則

(1)579經(jīng)過(guò)三次“F運(yùn)算”得
495
495
;
(2)假設(shè)
.
abc
中a>b>c,則
.
abc
經(jīng)過(guò)一次“F運(yùn)算”得
99(a-c)
99(a-c)
(用代數(shù)式表示);
(3)猜想;任意一個(gè)三位數(shù)經(jīng)過(guò)若干次“F運(yùn)算’’都會(huì)得到一個(gè)定值
495
495
,請(qǐng)證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案