如圖,已知△ADE∽△ABC,相似比為2:3,則=( )

A.3:2
B.2:3
C.2:1
D.不能確定
【答案】分析:由于△ADE∽△ABC,且已知了它們的相似比,因此兩三角形的對(duì)應(yīng)邊的比等于相似比.由此可求出BC、DE的比例關(guān)系.
解答:解:∵△ADE∽△ABC,且相似比為2:3,
=
故本題選A.
點(diǎn)評(píng):本題主要考查相似三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知△ADE∽△ACB,且∠ADE=∠C,則AD:AC=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、填注理由:
如圖,已知∠ADE=∠B,F(xiàn)G⊥AB,∠EDC=∠GFB,求證:CD⊥AB
證明:因?yàn)椤螦DE=∠B(已知)
所以DE∥BC(
同位角相等,兩直線平行

所以∠EDC=∠DCB(
兩直線平行,內(nèi)錯(cuò)角相等

因?yàn)椤螮DC=∠GFB(已知)
所以∠DCB=∠GFB(
等量代換

所以FG∥CD(
同位角相等,兩直線平行

所以∠BGF=∠BDC(
兩直線平行,同位角相等

因?yàn)镕G⊥AB(已知)
所以∠BGF=90°(
垂直的定義

所以∠BDC=90°(
等量代換

即CD⊥AB(
垂直的定義

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ADE∽△ABC,且∠AED=∠C,AD=2,AB=4,DE=1.8,求BC的長及AE:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ADE∽△ABC,相似比為2:3,則BC:DE的值為
3:2
3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,則BE=
8.5
8.5

查看答案和解析>>

同步練習(xí)冊(cè)答案