如圖,在平面直角坐標(biāo)系中,點(diǎn)M在X軸上,⊙M與Y軸相切于O點(diǎn),過點(diǎn)A(2,0)作⊙M的切線,切點(diǎn)為B點(diǎn),已知:
(1)求⊙M的半徑r;
(2)求點(diǎn)B的坐標(biāo);
(3)若拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、M三點(diǎn),求此拋物線的解析式;
(4)在y軸上是否存在點(diǎn)C,使△ABC為直角三角形?若存在,請(qǐng)求出C點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)可連接BM,根據(jù)sin∠A的正弦值,可得出BM:AM=1:2,也就是AM=2BM=OM+OA=BM+OA,因此BM=OA,即可求出r的值.
(2)可過B作BN⊥AM于N,那么ON就是B的橫坐標(biāo)的絕對(duì)值,BN就是B的縱坐標(biāo).在直角三角形BMN中,已求的了半徑的長,又可求得∠BMA=60°,即可求出BN,MN的長,也就求出了ON的長,進(jìn)而可得出B點(diǎn)的坐標(biāo).
(3)已經(jīng)求的了A,B,M的坐標(biāo),可用待定系數(shù)法求二次函數(shù)的解析式(可用交點(diǎn)式的二次函數(shù)通式來設(shè)二次函數(shù))
(4)要分三種情況進(jìn)行討論:
①當(dāng)∠ABC=90°時(shí),那么C點(diǎn)就在BM所在直線上,可在直角三角形MOC中,根據(jù)OM和∠CMO的度數(shù)求出OC的長,即可得出C的坐標(biāo).
②當(dāng)∠BAC=90°時(shí),那么∠OAC=60°,在直角三角形OAC中可根據(jù)OA的長求出OC的長,也就得出了C點(diǎn)的坐標(biāo)
③當(dāng)∠BCA=90°時(shí),那么AB是斜邊,可設(shè)出C的坐標(biāo),然后用坐標(biāo)系中兩點(diǎn)的距離公式分別表示出AC2,BC2,AB2,然后根據(jù)勾股定理即可求出C的坐標(biāo).
解答:解:(1)連接BM,則∠MBA=90°.
直角三角形MBA中,sin∠A==,BM=r,MA=OM+AO=r+2.
因此=,r=2.

(2)過B作BN⊥AM于N,
∵sin∠A=30°
∴∠A=∠MBN=30°,∠BMN=60°
直角三角形BMN中,BM=2,∠BMN=60°,
因此MN=1,BN=
∴ON=OM-MN=1
因此B的坐標(biāo)是(-1,).

(3)由于OM=2,
因此M的坐標(biāo)是(-2,0).
設(shè)拋物線的解析式為y=a(x-2)(x+2),
由于拋物線過B(-1,
可得:a(1-4)=,a=-
因此拋物線的解析式為y=-x2+

(4)可分三種情況:
①當(dāng)∠ABC=90°時(shí),C在直線BM上,
直角三角形MCO中,∠CMO=60°,OM=2,
因此OC=2,即C點(diǎn)的坐標(biāo)為(0,2
②當(dāng)∠BAC=90°時(shí),那么∠OAC=90°-∠BAM=60°,直角三角形OAC中
OC=OA•tan60°=2,即C點(diǎn)的坐標(biāo)為(0,-2
③當(dāng)∠BCA=90°時(shí),設(shè)C點(diǎn)坐標(biāo)為(0,y),則
AC2=4+y2,BC2=(-y)2+1,AB2=3+9=12,
根據(jù)勾股定理可得:BC2+AC2=AB2
4+y2+(-y)2+1=12,
解得y=,
綜上所述,C點(diǎn)的坐標(biāo)應(yīng)該是(0,±2)和(0,).
點(diǎn)評(píng):本題結(jié)合圓,三角形的知識(shí)考查了二次函數(shù)的綜合應(yīng)用,結(jié)合幾何知識(shí),利用數(shù)形結(jié)合的思想求解是這類題的基本思路.要注意(4)中要分情況進(jìn)行討論,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案