在矩形ABCD中,AB=1,∠AOB=60°,則矩形ABCD的面積________.


分析:根據(jù)矩形性質得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OB,得出等邊三角形AOB,求出AC,在Rt△ACB中,由勾股定理求出BC,即可求出矩形ABCD的面積.
解答:∵四邊形ABCD是矩形,
∴∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等邊三角形,
∴OA=OB=AB=1,
∴AC=2OA=2,
在Rt△ACB中,由勾股定理得:BC=,
即矩形ABCD的面積是AB×BC=1×=
故答案為:
點評:本題考查了矩形的性質,等邊三角形的性質和判定,勾股定理的應用,矩形的對角線相等且平分,有一個角是60度的等腰三角形是等邊三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點E,EF⊥AD交AD于點F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點不重合的動點,過點P的直線交CD的延長線于R,交AD于Q(Q與D不重合),且∠RPC=45°,設BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,F(xiàn)是BC邊上一點,AF的延長線交DC的延長線于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在矩形ABCD中,AB=8,AD=6,E為AB邊上一點,連接DE,過C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設CF=x,DE=y,求y與x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個角的角平分線,E、M、F、N是其交點,求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習冊答案