【題目】已知關于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為ABC三邊的長.

(1)如果x=-1是方程的根,試判斷ABC的形狀,并說明理由;

(2)如果方程有兩個相等的實數(shù)根,試判斷ABC的形狀,并說明理由.

【答案】(1)ABC是等腰三角形,理由見解析;(2)ABC是直角三角形.理由見解析.

【解析】

試題(1)由方程解的定義把x=﹣1代入方程得到a﹣b=0,即a=b,于是由等腰三角形的判定即可得到△ABC是等腰三角形;

2)由判別式的意義得到△=0,整理得,然后由勾股定理的逆定理得到△ABC是直角三角形.

試題解析:解:(1△ABC是等腰三角形.理由如下:

∵x=﹣1是方程的根,a+c×1﹣2b+a﹣c=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;

2△ABC是直角三角形.理由如下:

方程有兩個相等的實數(shù)根,∴△=,,,∴△ABC是直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學思想轉化,把未知轉化為已知.

轉化的數(shù)學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉化為x(x2+x﹣2)=0,解方程x=0x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.

(1)問題:方程x3+x2﹣2x=0的解是x1=0,x2=________,x3=________;

(2)拓展:用轉化思想求方程=x的解;

(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是邊長為5cm的等邊三角形,點P,Q分別從頂點A,B同時出發(fā),沿線段AB,BC運動,且它們的速度都為1cm/s.當點P到達點B時,P,Q兩點停止運動,設點P的運動時間為ts).

1)當t為何值時,PBQ是直角三角形?

2)連接AQ、CP,相交于點M,則點PQ在運動的過程中,CMQ會變化嗎?若變化,則說明理由;若不變,請求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸為,與軸的一個交點在之間,其部分圖象如圖所示,則下列結論:

;;、是該拋物線上的點,則;為任意實數(shù)).

其中正確結論的個數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某活動小組為了估計裝有個白球和若干個紅球(每個球除顏色外都相同)的袋中紅球接近多少個,在不將袋中球倒出來的情況下,分小組進行摸球試驗,兩人一組,共組進行摸球實驗.其中一位學生摸球,另一位學生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做次試驗,匯總起來后,摸到紅球次數(shù)為次.

估計從袋中任意摸出一個球,恰好是紅球的概率是多少?

請你估計袋中紅球接近多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點AB以及直線l,AEl,垂足為點E

1)過點BBFl,垂足為點F;

2)在直線l上求作一點C,使CACB

(要求:第(1)、(2)小題用尺規(guī)作圖,并在圖中標明相應字母,保留作圖痕跡,不寫作法.)

3)在所作的圖中,連接CACB,若∠ACB90°,求證:△AEC≌△CFB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在ABCAEF中,點EBC邊上,AEABACAF,∠CAF=∠BAE,EFAC交于點G

1)求證:EFBC;

2)若∠ABC65°.∠ACB28°,求∠FGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當△PMN周長取最小值時,則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAC中,以O為圓心,OA為半徑作⊙O,作OB⊥OC⊙OB,垂足為O,連接ABOC于點D,∠CAD=∠CDA

1)判斷AC⊙O的位置關系,并證明你的結論;

2)若OA=5,OD=1,求線段AC的長.

查看答案和解析>>

同步練習冊答案