(2008•常德)已知⊙O的半徑為5cm,弦AB的長為8cm,則圓心O到AB的距離為    cm.
【答案】分析:利用垂徑定理和勾股定理可解.
解答:解:作OC⊥AB于C點,
利用垂徑定理可知,AB=2BC,∴BC=4cm,
再利用勾股定理可知,
CO2+BC2=BO2,
CO==3,
圓心O到AB的距離CO為3cm.
點評:本題的關鍵是利用垂徑定理和勾股定理求線段的長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2008•常德)如圖,已知四邊形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直線BM的解析式;
(2)求過A、M、B三點的拋物線的解析式;
(3)在(2)中的拋物線上是否存在點P,使△PMB構(gòu)成以BM為直角邊的直角三角形?若沒有,請說明理由;若有,則求出一個符合條件的P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省湛江市初中畢業(yè)生學業(yè)考試6月仿真數(shù)學試卷(解析版) 題型:解答題

(2008•常德)如圖,已知四邊形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直線BM的解析式;
(2)求過A、M、B三點的拋物線的解析式;
(3)在(2)中的拋物線上是否存在點P,使△PMB構(gòu)成以BM為直角邊的直角三角形?若沒有,請說明理由;若有,則求出一個符合條件的P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖南省常德市中考數(shù)學試卷(解析版) 題型:解答題

(2008•常德)如圖,已知四邊形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直線BM的解析式;
(2)求過A、M、B三點的拋物線的解析式;
(3)在(2)中的拋物線上是否存在點P,使△PMB構(gòu)成以BM為直角邊的直角三角形?若沒有,請說明理由;若有,則求出一個符合條件的P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:填空題

(2008•常德)已知⊙O的半徑為5cm,弦AB的長為8cm,則圓心O到AB的距離為    cm.

查看答案和解析>>

同步練習冊答案