精英家教網(wǎng)如圖所示,OE,OD分別平分∠AOB和∠BOC,若∠AOB=90°,∠EOD=70°,求∠BOC的度數(shù).
分析:根據(jù)角平分線的定義易得∠BOE的度數(shù),那么根據(jù)∠EOD的度數(shù),就能求得∠BOD的度數(shù),根據(jù)角平分線定義可得到∠BOC的度數(shù).
解答:解:∵OE,OD分別平分∠AOB和∠BOC,
∴∠EOB=
1
2
∠AOB=
1
2
×90°=45°,
又∵∠EOB+∠BOD=∠EOD=70°,
∴∠BOD=25°,
又∵∠BOC=2∠BOD,
∴∠BOC=2×25°=50°.
∴∠BOC的度數(shù)是50°
故答案為50°.
點(diǎn)評(píng):當(dāng)告訴兩角平分線的夾角的度數(shù)時(shí),應(yīng)從夾角入手,得到所求角的一半,進(jìn)而求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,OE,OD分別平分∠AOB和∠BOC,且∠AOB=90°;
(1)如果∠BOC=40°,求∠EOD的度數(shù);
(2)如果∠EOD=70°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,OE,OD分別平分∠AOC和∠BOC.
(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β(α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從(1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,OE,OD分別平分∠AOC和∠BOC,
(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β(α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從 (1)、(2)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,OE和OD分別是∠AOB和∠BOC的平分線,且∠AOB=90°,∠BOC=40°,求∠EOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案