如圖,在矩形ABCD中,AB=3,AD=1,點(diǎn)P在線段AB上運(yùn)動(dòng),設(shè)AP=x,現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)P重合,得折痕EF(點(diǎn)E、F為折痕與矩形邊的交點(diǎn)),再將紙片還原.
(1)當(dāng)x=0時(shí),折痕EF的長(zhǎng)為
 
;當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),折痕EF的長(zhǎng)為
 

(2)試探索使四邊形EPFD為菱形時(shí)x的取值范圍,并求當(dāng)x=2時(shí),菱形EPFD的邊長(zhǎng).提示:用草稿紙折折看,或許對(duì)你有所幫助!
精英家教網(wǎng)
分析:(1)當(dāng)x=0時(shí),折痕EF的長(zhǎng)正好等于矩形的長(zhǎng)為3,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),畫出符合要求的圖形,得出∠DEF=∠FEP=45°,利用勾股定理得出答案.
(2)結(jié)合EF的長(zhǎng)度得出x的取值范圍,當(dāng)x=2時(shí),設(shè)PE=m,則AE=2-m,利用勾股定理得出答案.
解答:精英家教網(wǎng)解:(1)∵紙片折疊,使點(diǎn)D與點(diǎn)P重合,得折痕EF,
當(dāng)AP=x=0時(shí),點(diǎn)D與點(diǎn)P重合,即為A,D重合,B,C重合,那么EF=AB=CD=3;
當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),
∵點(diǎn)D與點(diǎn)P重合是已知條件,
∴∠DEF=∠FEP=45°,
∴∠DFE=45°,
即:ED=DF=1,
利用勾股定理得出EF=
2

∴折痕EF的長(zhǎng)為
2
;
故答案為:3,
2


(2)∵要使四邊形EPFD為菱形,
∴DE=EP=FP=DF,
只有點(diǎn)E與點(diǎn)A重合時(shí),EF最長(zhǎng)為
2
,此時(shí)x=1,
當(dāng)EF最短時(shí),即EF=BC,此時(shí)x=3,
∴探索出1≤x≤3
當(dāng)x=2時(shí),如圖,連接DE、PF.精英家教網(wǎng)
∵EF是折痕,
∴DE=PE,設(shè)PE=m,則AE=2-m
∵在△ADE中,∠DAE=90°,
∴AD2+AE2=DE2,即12+(2-m)2=m2
解得m=
5
4
,此時(shí)菱形EPFD的邊長(zhǎng)為
5
4
點(diǎn)評(píng):此題主要考查了折疊前后對(duì)應(yīng)關(guān)系和勾股定理的應(yīng)用,根據(jù)已知條件得出對(duì)應(yīng)線段與對(duì)應(yīng)角之間的關(guān)系是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長(zhǎng)為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊(cè)答案