(2009•咸寧)如圖,在平面直角坐標系中,⊙A與y軸相切于原點O,平行于x軸的直線交⊙A于M,N兩點,若點M的坐標是(-4,-2),則點N的坐標為( )

A.(-1,-2)
B.(1,-2)
C.(-1.5,2)
D.(1.5,-2)
【答案】分析:本題可先設半徑的大小,根據(jù)點A的坐標列出方程.連接AN根據(jù)等腰三角形的性質即可得出AN的長度,再根據(jù)兩點之間的距離公式即可解出N點的坐標.
解答:解:過點A作AB⊥MN,連接AN
設⊙A的半徑為r,
則AN=r,AB=2,BN=MF-BF=4-r,
則在Rt△ABN中,根據(jù)勾股定理,可得:r=2.5,
∴BN=4-2.5=1.5,
∴N到y(tǒng)軸的距離為:2.5-1.5=1,
又點N在第三象限,
∴N的坐標為(-1,-2).
故選A.
點評:解此類題一般要把半徑、弦心距、弦的一半構建在一個直角三角形里,運用勾股定理求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(24)(解析版) 題型:解答題

(2009•咸寧)如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A′C′D′.
(1)證明△A′AD′≌△CC′B;
(2)若∠ACB=30°,試問當點C'在線段AC上的什么位置時,四邊形ABC′D′是菱形,并請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年初中數(shù)學第一輪復習教學案例.5.2.三角形的基本概念與基本性質(解析版) 題型:填空題

(2009•咸寧)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D.下列四個結論:
①∠BOC=90°+∠A;
②以E為圓心,BE為半徑的圓與以F為圓心,CF為半徑的圓外切;
③設OD=m,AE+AF=n,則S△AEF=mn;
④EF不能成為△ABC的中位線.
其中正確的結論是    .(把你認為正確結論的序號都填上,答案格式如:“①,②,③,④”)

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省咸寧市中考數(shù)學試卷(解析版) 題型:解答題

(2009•咸寧)如圖①,在平面直角坐標系中,O為坐標原點,邊長為5的正三角形OAB的OA邊在x軸的正半軸上.點C、D同時從點O出發(fā),點C以1單位長/秒的速度向點A運動,點D為2個單位長/秒的速度沿折線OBA運動.設運動時間為t秒,0<t<5.
(1)當0<t<時,證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關系式;
(3)以點C為中心,將CD所在的直線順時針旋轉60°交AB邊于點E,若以O、C、D、E為頂點的四邊形是梯形,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省咸寧市中考數(shù)學試卷(解析版) 題型:解答題

(2009•咸寧)如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A′C′D′.
(1)證明△A′AD′≌△CC′B;
(2)若∠ACB=30°,試問當點C'在線段AC上的什么位置時,四邊形ABC′D′是菱形,并請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省咸寧市中考數(shù)學試卷(解析版) 題型:填空題

(2009•咸寧)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D.下列四個結論:
①∠BOC=90°+∠A;
②以E為圓心,BE為半徑的圓與以F為圓心,CF為半徑的圓外切;
③設OD=m,AE+AF=n,則S△AEF=mn;
④EF不能成為△ABC的中位線.
其中正確的結論是    .(把你認為正確結論的序號都填上,答案格式如:“①,②,③,④”)

查看答案和解析>>

同步練習冊答案