【題目】α與β的兩邊分別平行,且α =(x+10)°,β =(2x-25)°,則α的度數(shù)為(

A.45° B.75° C.45°或75° D.45°或55°

【答案】C.

【解析】

試題分析:根據(jù)兩角的兩邊互相平行得出兩角相等或互補(bǔ),得出方程,求出即可:

∵∠α與β的兩邊分別平行,∴∠α+β=180°或α=β.

∵∠α=(x+10)°,β=(2x-25)°,x+10+2x-25=180或x+10=2x-25,解得:x=35或65.

∴∠α=45°或75°.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】絕對值不大于2的整數(shù)有_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=a,AD=b,點(diǎn)M為BC邊上一動點(diǎn)(點(diǎn)M與點(diǎn)B、C不重合),連接AM,過點(diǎn)M作MN⊥AM,垂足為M,MN交CD或CD的延長線于點(diǎn)N.

(1)求證:△CMN∽△BAM;

(2)設(shè)BM=x,CN=y,求y關(guān)于x的函數(shù)解析式.當(dāng)x取何值時,y有最大值,并求出y的最大值;

(3)當(dāng)點(diǎn)M在BC上運(yùn)動時,求使得下列兩個條件都成立的b的取值范圍:①點(diǎn)N始終在線段CD上,②點(diǎn)M在某一位置時,點(diǎn)N恰好與點(diǎn)D重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程mx﹣2=3x的解為x=﹣1,則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著城際鐵路的正式開通,從甲市經(jīng)丙市到乙市的高鐵里程比普快里程縮短了90km,運(yùn)行時間減少了8h,已知甲市到乙市的普快列車?yán)锍虨?220km.高鐵平均時速是普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)某日王先生要從甲市去距離大約780km的丙市參加14:00召開的會議,如果他買到當(dāng)日9:20從甲市到丙市的高鐵票,而且從丙市火車站到會議地點(diǎn)最多需要1小時.試問在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下,它能否在開會之前20分鐘趕到會議地點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“經(jīng)過已知直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過程:

已知:直線l和l外一點(diǎn)P.(如圖1)

求作:直線l的垂線,使它經(jīng)過點(diǎn)P.

作法:如圖2

(1)在直線l上任取兩點(diǎn)A,B;

(2)分別以點(diǎn)A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點(diǎn)Q;

(3)作直線PQ.

所以直線PQ就是所求的垂線.

請回答:該作圖的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)A(a+1,b﹣1)在第二象限,則點(diǎn)B(﹣1,b)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩地有公路和鐵路相連,在這條路上有一家食品廠,它到B地的距離是到A地的2倍,這家工廠從A地購買原料,制成食品賣到B地.已知公路運(yùn)價為1.5元/(公里噸),鐵路運(yùn)價為1元/(公里噸),這兩次運(yùn)輸(第一次:A地→食品廠,第二次:食品廠→B地)共支出公路運(yùn)費(fèi)15600元,鐵路運(yùn)費(fèi)20600元.

問:
(1)這家食品廠到A地的距離是多少?
(2)這家食品廠此次共買進(jìn)原料和賣出食品各多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中互為相反數(shù)的是( )
A. 和-
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案