【題目】如圖,∠A=15°,AB=BC=CD=DE=EF,則∠MEF=

【答案】75°
【解析】解:∵AB=BC=CD=DE=EF,∠A=15°,∴∠BCA=∠A=15°,
∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,
∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,
∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,
∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,
∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,
∴∠MEF=∠EFD+∠A=60°+15°=75°.
所以答案是:75°.
【考點精析】關(guān)于本題考查的等腰三角形的性質(zhì),需要了解等腰三角形的兩個底角相等(簡稱:等邊對等角)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD=4 ,CD=2 ,點P在四邊形ABCD的邊上,若點P到BD的距離為3,則點P的個數(shù)為(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓柱的底面半徑為3cm,母線長為5cm,則圓柱的側(cè)面積是( )
A.30cm2
B.30πcm2
C.15cm2
D.15πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:△ABC中,D點在BC上,現(xiàn)有下列四個命題:①若AB=AC,則∠B=∠C.②若AB=AC,∠BAD=∠CAD,則AD⊥BC,BD=DC.③若AB=AC,BD=DC,則AD⊥BC,∠BAD=∠CAD.④若AB=AC,AD⊥BC,則BD=DC,∠BAD=∠CAD.其中正確的有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八棱柱有個頂點,條棱,個面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點A(﹣2,y1),B(﹣1y2),C8y3)都在二次函數(shù)yax2a0)的圖象上,則下列結(jié)論正確的是( 。

A.y1y2y3B.y2y1y3C.y3y1y2D.y1y3y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA=2,以點A為圓心,1為半徑畫⊙A與OA的延長線交于點C,過點A畫OA的垂線,垂線與⊙A的一個交點為B,連接BC

(1)線段BC的長等于 ;

(2)請在圖中按下列要求逐一操作,并回答問題:

①以點 為圓心,以線段 的長為半徑畫弧,與射線BA交于點D,使線段OD的長等于

②連OD,在OD上畫出點P,使OP得長等于,請寫出畫法,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,ABAC , 射線AM平分∠BAC

(1)設(shè)AMBC于點D , 作DEAB于點E , DFAC于點F , 連接EF . 有以下三種“判斷”:
判斷1:AD垂直平分EF.
判斷2:EF垂直平分AD.
判斷3:AD與EF互相垂直平分.
你同意哪個“判斷”?簡述理由;
(2)若射線AM上有一點N到△ABC的頂點B , C的距離相等,連接NB , NC
①請指出△NBC的形狀,并說明理由;
②當(dāng)AB=11,AC=7時,求四邊形ABNC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件是必然事件的是( 。

A.某人體溫是100B.太陽從西邊下山

C.a2+b2=﹣1D.購買一張彩票,中獎

查看答案和解析>>

同步練習(xí)冊答案