如圖,點(diǎn)A、B在⊙O上,直線AC是⊙O的切線,OC⊥OB,連接AB交OC于點(diǎn)D.
(1)AC與CD相等嗎?為什么?
(2)若AC=2,AO=,求OD的長度.
(1)AC=CD(2)OD=1
【解析】解:(1)AC=CD,理由如下:
∵OA=OB,∴∠OAB=∠B。
∵直線AC為圓O的切線,∴∠OAC=∠OAB+∠DAC=90°。
∵OB⊥OC,∴∠BOC=90°。∴∠ODB+∠B=90°。
∵∠ODB=∠CDA,∴∠CDA+∠B=90°。
∴∠DAC=∠CDA!郃C=CD。
(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,
根據(jù)勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,
解得:OD=1(負(fù)值已舍去)。
(1)AC=CD,理由為:由AC為圓的切線,利用切線的性質(zhì)得到∠OAC為直角,再由OC與OB垂直,得到∠BOC為直角,由OA=OB,利用等邊對等角得到一對角相等,再利用對頂角相等及等角的余角相等得到一對角相等,利用等角對等邊即可得證。
(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的長。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com