【題目】如圖,將△ABC繞點C順時針旋轉得到△DEC,使點A的對應點D恰好落在邊AB上,點B的對應點為E,連接BE.
(Ⅰ)求證:∠A=∠EBC;
(Ⅱ)若已知旋轉角為50°,∠ACE=130°,求∠CED和∠BDE的度數(shù).
【答案】(Ⅰ)證明見解析;(Ⅱ)∠BDE=50°, ∠CED =35°
【解析】
(Ⅰ)由旋轉的性質可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性質可求解.
(Ⅱ)由旋轉的性質可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形內(nèi)角和定理和等腰三角形的性質可求解.
證明:(Ⅰ)∵將△ABC繞點C順時針旋轉得到△DEC,
∴AC=CD,CB=CE,∠ACD=∠BCE,
∴∠A=,∠CBE=,
∴∠A=∠EBC;
(Ⅱ)∵將△ABC繞點C順時針旋轉得到△DEC,
∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE
∴∠A=∠ADC=65°,
∵∠ACE=130°,∠ACD=∠BCE=50°,
∴∠ACB=∠DCE =80°,
∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,
∵∠EDC=∠A=65°,
∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形EFGH的四個頂點分別在菱形ABCD的四條邊上,BE=BF,將△AEH, △CFG分別沿EH,FG折疊,當重疊部分為菱形且面積是菱形ABCD面積的時,則為( )
A. B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點E,F分別為BC上的點,EF=,∠BAC=135°,∠EAF=90°,tan∠AEF=1.
(1)若1<BE<2,求CF的取值范圍;
(2)若AB=,求△ACF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠C=90°,AB=8,點O是AB的中點.將一個邊長足夠大的Rt△DEF的直角頂點E放在點O處,并將其繞點O旋轉,始終保持DE與AC邊交于點G,EF與BC邊交于點H.
(1)當點G在AC邊什么位置時,四邊形CGOH是正方形.
(2)等腰直角三角ABC的邊被Rt△DEF覆蓋部分的兩條線段CG與CH的長度之和是否會發(fā)生變化,如不發(fā)生變化,請求出CG與CH之和的值:如發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(﹣1,0),請解答下列問題:
(1)求拋物線的解析式;
(2)拋物線的頂點為點D,對稱軸與x軸交于點E,連接BD,求BD的長;
(3)點F在拋物線上運動,是否存在點F,使△BFC的面積為6,如果存在,求出點F的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)如今,“垃圾分類”已逐漸推廣.如圖,垃圾一般可分為:可回收物,廚余垃圾,有害垃圾,其它垃圾.甲拿了一袋有害垃圾,乙拿了一袋廚余垃圾,隨機扔進并排的4個垃圾桶.
(1)直接寫出甲扔對垃圾的概率;
(2)用列表或畫樹形圖的方法求甲、乙兩人同時扔對垃圾的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ACB中,∠C=90°,以點A為中心,分別將線段AB, AC 逆時針旋轉60°得到線段AD, AE,連接DE,延長DE交CB于點F.
(1)如圖1,若∠B=30°,∠CFE的度數(shù)為_________;
(2)如圖2,當30°<∠B<60°時,
①依題意補全圖2;
②猜想CF與AC的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接杭州G20峰會,某校開展了設計“YJG20”圖標的活動,下列圖形中及時軸對稱圖形又是中心對稱圖形的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com