如圖,AC與BD相交于點(diǎn)O,AO=DO,∠A=∠D.求證:△ABO≌△DCO.

【答案】分析:先根據(jù)對頂角相等得到∠AOB=∠COD,再根據(jù)全等三角形的判定方法AAS即可得到△ABO≌△DCO.
解答:證明:在△ABO與△DCO中,
,
∴△ABO≌△DCO(AAS).
點(diǎn)評:本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:
(1)判定定理1:SSS--三條邊分別對應(yīng)相等的兩個三角形全等.
(2)判定定理2:SAS--兩邊及其夾角分別對應(yīng)相等的兩個三角形全等.
(3)判定定理3:ASA--兩角及其夾邊分別對應(yīng)相等的兩個三角形全等.
(4)判定定理4:AAS--兩角及其中一個角的對邊對應(yīng)相等的兩個三角形全等.
(5)判定定理5:HL--斜邊與直角邊對應(yīng)相等的兩個直角三角形全等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,AC與BD相交于點(diǎn)P,若△ABC≌△DCB,則△ABP≌△DCP,理由是:
∵△ABC≌△DCB
∴AB=CD(全等三角形對應(yīng)邊相等)
∠A=
∠D

在△ABP和△DCP中
∠A=∠D
∠APB=
∠DPC
(對頂角相等)
AB=CD
∴△ABP≌△DCP  ( AAS )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,AC與BD相交于點(diǎn)O,已知OA=OC,OB=OD,則△AOB≌△COD的理由是
SAS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC與BD相交于O,∠1=∠4,∠2=∠3,△ABC的周長為25cm,△AOD的周長為17cm,則AB=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC與BD相交于點(diǎn)O,AD=BC,∠D=∠C,試說明BD與AC相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC與BD相交于點(diǎn)O,有以下四個條件:
①OD=OC;②∠C=∠D;③AD=BC;④∠DAO=∠CBO.
從這四個條件中任選兩個,能使△DAO≌△CBO的選法種數(shù)共有( 。

查看答案和解析>>

同步練習(xí)冊答案