如圖,在平面直角坐標系xOy中,已知點A(4,0),點B(0,3),點P從點B出發(fā)沿BA方向向點A勻速運動,速度為每秒1個單位長度,點Q從點A出發(fā)沿AO方向向點O勻速精英家教網(wǎng)運動,速度為每秒2個單位長度,連接PQ.若設運動的時間為t秒(0<t<2).
(1)求直線AB的解析式;
(2)設△AQP的面積為y,求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使線段PQ恰好把△AOB的周長和面積同時平分?若存在,請求出此時t的值;若不存在,請說明理由;
(4)連接PO,并把△PQO沿QO翻折,得到四邊形PQP′O,那么是否存在某一時刻t,使四邊形PQP′O為菱形?若存在,請求出此時點Q的坐標和菱形的邊長;若不存在,請說明理由.
分析:(1)已知了A、B兩點的坐標,可用待定系數(shù)法求出直線AB的解析式.
(2)三角形APQ中,底邊AQ的長易知,關鍵是求P點縱坐標的值;過P作PM⊥OA于M,通過構建的相似三角形得出的成比例線段,可求出PM的長.進而可根據(jù)三角形的面積公式求出y,t的函數(shù)關系式.
(3)可用分析法求解.先假設存在這樣的t值,由于此時PQ將三角形ABO的周長平分,因此BP+BO+OQ=AP+AQ,據(jù)此可求出t的值,然后將t的值,代入(2)的函數(shù)關系式中,看此時三角形APQ的面積是否等于三角形AOB的面積的一半即可.
(4)如果四邊形OPQP′是菱形,那么需要滿足的條件是OP=PQ,那么PM垂直平分OQ,此時QM=OQ,可借助OA的長來求t的值.過P作PN⊥OB于N,那么三角形BNP和三角形BOA相似,可求得PN的表達式,也就求出了QM,MO的表達式,可根據(jù)OA=OM+QM+AQ來求出此時t的值.進而可求出菱形的邊長.
解答:精英家教網(wǎng)解:(1)設直線AB的解析式為y=kx+b,
4k+b=0
b=3

解得
k=-
3
4
b=3
,
∴直線AB的解析式是y=-
3
4
x+3.

(2)在Rt△AOB中,AB=
BO2+AO2
=5,
依題意,得BP=t,AP=5-t,AQ=2t,
過點P作PM⊥AO于M,
∵△APM∽△ABO,
PM
BO
=
AP
AB
,
PM
3
=
5-t
5
,
∴PM=3-
3
5
t,
∴y=
1
2
AQ•PM=
1
2
•2t•(3-
3
5
t)=-
3
5
t2+3t.

(3)不存在某一時刻t,使線段PQ恰好把△AOB的周長和面積同時平分,
若PQ把△AOB周長平分,則AP+AQ=BP+BO+OQ,
∴(5-t)+2t=t+3+(4-2t),
解得t=1.
若PQ把△AOB面積平分,則S△APQ=
1
2
S△AOB,
∴-
3
5
t2+3t=3,
∵t=1代入上面方程不成立,
∴不存在某一時刻t,使線段PQ把△AOB的周長和面積同時平分.

(4)存在某一時刻t,使四邊形PQP'O為菱形,
過點P作PN⊥BO于N,
若四邊形PQP′O是菱形,則有PQ=PO,
∵PM⊥AO于M,
∴QM=OM,
∵PN⊥BO于N,可得△PBN∽△ABO,
PN
AO
=
PB
AB

PN
4
=
t
5
,
∴PN=
4
5
t,
∴QM=OM=
4
5
t,
4
5
t+
4
5
t+2t=4,
∴t=
10
9
,
∴當t=
10
9
時,四邊形PQP′O是菱形,
∴OQ=4-2t=
16
9

∴點Q的坐標是(
16
9
,0).
∵PM=3-
3
5
t=
7
3
,OM=
4
5
t=
8
9
,
在Rt△PMO中,PO=
PM2+OM2
=
49
9
+
64
81
=
505
9

∴菱形PQP′O的邊長為
505
9
點評:本題考查了一次函數(shù)解析式的確定、圖形面積的求法、相似三角形的應用、菱形的判定和性質(zhì)等知識.綜合性強,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案