【題目】如圖,在Rt△ABC中,BC2,∠BAC30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結(jié)論: ①若C,O兩點關(guān)于AB對稱,則OA;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為.
其中正確的是( )
A. ①② B. ①②③ C. ①③④ D. ①②④
【答案】D
【解析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求AC和AB,由對稱的性質(zhì)可知:AB是OC的垂直平分線,所以
②當OC經(jīng)過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;
③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點共圓可知:A、C、B、O四點共圓,則AB為直徑,由垂徑定理相關(guān)推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;
④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進行計算即可.
詳解:在Rt△ABC中,∵
∴
①若C.O兩點關(guān)于AB對稱,如圖1,
∴AB是OC的垂直平分線,
則
所以①正確;
②如圖1,取AB的中點為E,連接OE、CE,
∵
∴
當OC經(jīng)過點E時,OC最大,
則C.O兩點距離的最大值為4;
所以②正確;
③如圖2,當時,
∴四邊形AOBC是矩形,
∴AB與OC互相平分,
但AB與OC的夾角為不垂直,
所以③不正確;
④如圖3,斜邊AB的中點D運動路徑是:以O為圓心,以2為半徑的圓周的
則:
所以④正確;
綜上所述,本題正確的有:①②④;
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他騎公共自行車比自駕車平均每小時少行駛45千米,他從家出發(fā)到上班地點,騎公共自行車所用的時間是自駕車所用的時間的4倍.小張騎公共自行車平均每小時行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點在原點的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當年銷售完,達到產(chǎn)銷平衡,所獲毛利潤為w萬元.(毛利潤=銷售額-生產(chǎn)費用)
(1)請直接寫出y與x以及z與x之間的函數(shù)關(guān)系式;
(2)求w與x之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?
(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)《北京晚報》介紹,自2009年故宮博物院年度接待觀眾首次突破1000萬人次之后,每年接待量持續(xù)增長,到2018年突破1700萬人次,成為世界上接待量最多的博物館.特別是隨著《我在故宮修文物》、《上新了,故宮》等一批電視文博節(jié)目的播出,社會上再次掀起故宮熱.于是故宮文創(chuàng)營銷人員為開發(fā)針對不同年齡群體的文創(chuàng)產(chǎn)品,隨機調(diào)查了部分參觀故宮的觀眾的年齡,整理并繪制了如下統(tǒng)計圖表.
2018年參觀故宮觀眾年齡頻數(shù)分布表
年齡x/歲 | 頻數(shù)/人數(shù) | 頻率 |
20≤x<30 | 80 | b |
30≤x<40 | a | 0.240 |
40≤x<50 | 35 | 0.175 |
50≤x<60 | 37 | c |
合計 | 200 | 1.000 |
(1)求表中a,b,c的值;
(2)補全頻數(shù)分布直方圖;
(3)從數(shù)據(jù)上看,年輕觀眾(20≤x<40)已經(jīng)成為參觀故宮的主要群體.如果今年參觀故宮人數(shù)達到2000萬人次,那么其中年輕觀眾預(yù)計約有 萬人次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=kx+b(k≠0)與直線y=-x+4的交點為P(3,m),與y軸交于點A.
(1)求m的值;
(2)如果△PAO的面積為3,求直線y=kx+b的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是菱形邊上的一個動點,點從點出發(fā),沿的方向勻速運動到停止,過點作垂直直線于點,已知,設(shè)點走過的路程為,點到直線的距離為(當點與點或點重合時,的值為)
小騰根據(jù)學(xué)習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化規(guī)律進行了探究,下面是小騰的探究過程,請補充完整;
(1)按照下表中自變量的值進行取點,畫圖,測量,分別得到了以下幾組對應(yīng)值;
(2)在同一平面直角坐標系中,描出補全后的表中各組數(shù)值所對應(yīng)的點,并畫出函數(shù)的圖像;
(3)結(jié)合函數(shù)圖像,解決問題,當點到直線的距離恰為點走過的路程的一半時,點P走過的路程約是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.
①動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標;
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點P的運動,正方形的大小、位置也隨之改變.
當頂點M或N恰好落在拋物線對稱軸上時,求出對應(yīng)的P點的坐標.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明每天早上7:30從家出發(fā),到距家的學(xué)校上學(xué),一天,小明以的速度上學(xué),后小明爸爸發(fā)現(xiàn)他發(fā)現(xiàn)忘帶語文書,爸爸立即帶上語文書去追趕小明.
(1)如果爸爸以的速度追小明,爸爸追上小明時距離學(xué)校多遠?
(2)如果爸爸剛好能在學(xué)校門口追上小明,爸爸的速度是多少?
(3)爸爸以的速度追趕小明,他把書給小明后及時原路原速返回(交書耽誤的時間忽略不計),返回家的時間是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com