如圖,用長為20米的籬笆恰好圍成一個(gè)扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為米,面積為平方米.(注:的近似值取3)

(1)求出的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)半徑為何值時(shí),扇形花壇的面積最大,并求面積的最大值.

(1).(2).

解析試題分析:解:(1)設(shè)扇形的弧長為l米.
由題意可知,.
.
.  
其中.
(2)∵.
∴當(dāng)時(shí),.
考點(diǎn):扇形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:

x

-1
0
  1
2
3
4

y

8
3
0
-1
0
3

(1)求該二次函數(shù)的解析式;
(2)當(dāng)x為何值時(shí),y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)兩點(diǎn)都在該函數(shù)的圖象上,計(jì)算當(dāng)m 取何值時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn).

(1)求△AOB的外接圓的面積;
(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位沿射線AC方向運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒0.5個(gè)單位沿射線BA方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C處時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).問當(dāng)t為何值時(shí),以A、P、Q為頂點(diǎn)的三角形與△OAB相似?
(3)若M為線段AB上一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
問:是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點(diǎn)B(12,0)和C(0,-6),對稱軸為x=2.

(1)求該拋物線的解析式;
(2)點(diǎn)D在線段AB上且AD=AC,若動(dòng)點(diǎn)P從A出發(fā)沿線段AB以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)Q以某一速度從C出發(fā)沿線段CB勻速運(yùn)動(dòng),問是否存在某一時(shí)刻,使線段PQ被直線CD垂直平分?若存在,請求出此時(shí)的時(shí)間t(秒)和點(diǎn)Q的運(yùn)動(dòng)速度;若不存在,請說明理由;
(3)在(2)的結(jié)論下,直線x=1上是否存在點(diǎn)M,使△MPQ為等腰三角形?若存在,請求出所有點(diǎn)M的坐標(biāo);若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)

(1)求拋物線頂點(diǎn)M的坐標(biāo);
(2)設(shè)拋物線與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),求A,B,C的坐標(biāo)(點(diǎn)A在點(diǎn)B的左側(cè)),并畫出函數(shù)圖象的大致示意圖;
(3)根據(jù)圖象,求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)已知二次函數(shù),請你化成的形式,并在直角坐標(biāo)系中畫出的圖象;
(2)如果是(1)中圖象上的兩點(diǎn),且,請直接寫出、的大小關(guān)系;
(3)利用(1)中的圖象表示出方程的根來,要求保留畫圖痕跡,說明結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

許多橋梁都采用拋物線型設(shè)計(jì),小明將他家鄉(xiāng)的彩虹橋按比例縮小后,繪成如下的示意圖,圖中的三條拋物線分別表示橋上的三條鋼梁,x軸表示橋面,y軸經(jīng)過中間拋物線的最高點(diǎn),左右兩條拋物線關(guān)于y軸對稱.經(jīng)過測算,中間拋物線的解析式為:y=-x2+10,并且BD=CD.

(1)求鋼梁最高點(diǎn)離橋面的高度OE的長;
(2)求橋上三條鋼梁的總跨度AB的長;
(3)若拉桿DE∥拉桿BN,求右側(cè)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

拋物線y=-x2+(m-1)x+m與y軸交于點(diǎn)(0,3).

(1)求拋物線的解析式;
(2)求拋物線與x軸的交點(diǎn)坐標(biāo);
(3)畫出這條拋物線大致圖象;
(4)根據(jù)圖象回答:
①當(dāng)x取什么值時(shí),y>0 ?
②當(dāng)x取什么值時(shí),y的值隨x的增大而減小?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y1=-x2+3與x軸交于A、B兩點(diǎn),與直線y2=-x+b相交于B、C兩點(diǎn).

(1)求直線BC的解析式和點(diǎn)C的坐標(biāo);
(2)若對于相同的x,兩個(gè)函數(shù)的函數(shù)值滿足y1≥y2,則自變量x的取值范圍是     

查看答案和解析>>

同步練習(xí)冊答案