【題目】如圖,已知正方形ABCD邊長(zhǎng)為1,,,則有下列結(jié)論:①;②點(diǎn)C到EF的距離是2-1;③的周長(zhǎng)為2;④,其中正確的結(jié)論有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】C
【解析】
先證明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可對(duì)①進(jìn)行判斷;連接EF、AC,它們相交于點(diǎn)H,如圖,利用Rt△ABE≌Rt△ADF得到BE=DF,則CE=CF,接著判斷AC垂直平分EF,AH平分∠EAF,于是利用角平分線(xiàn)的性質(zhì)定理得到EB=EH,FD=FH,則可對(duì)③④進(jìn)行判斷;設(shè)BE=x,則EF=2x,CE=1-x,利用等腰直角三角形的性質(zhì)得到2x=(1-x),解方程,則可對(duì)②進(jìn)行判斷.
解:∵四邊形ABCD為正方形,
∴AB=AD,∠BAD=∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴∠1=∠2,
∵∠EAF=45°,
∴∠1=∠2=∠22.5°,所以①正確;
連接EF、AC,它們相交于點(diǎn)H,如圖,
∵Rt△ABE≌Rt△ADF,
∴BE=DF,
而BC=DC,
∴CE=CF,
∵AE=AF,
∴AC垂直平分EF,AH平分∠EAF,
∴EB=EH,FD=FH,
∴BE+DF=EH+HF=EF,所以④錯(cuò)誤;
∴△ECF的周長(zhǎng)=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正確;
設(shè)BE=x,則EF=2x,CE=1-x,
∵△CEF為等腰直角三角形,
∴EF=CE,即2x=(1-x),解得x=-1,
∴BE=-1,
Rt△ECF中,EH=FH,
∴CH=EF=EH=BE=-1,
∵CH⊥EF,
∴點(diǎn)C到EF的距離是-1,
所以②錯(cuò)誤;
本題正確的有:①③;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,拋物線(xiàn)y=-x2-2x+3交x軸于點(diǎn)B,C,交y軸于點(diǎn)A,點(diǎn)P(x,y)是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),連接PA,AC,PC,記△ACP面積為S.當(dāng)y≤3時(shí),S隨x變化的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A、B在數(shù)軸上分別表示數(shù)a、b,A、B之間的距離可表示為AB=|a﹣b|.已知數(shù)軸上A,B兩點(diǎn)分別表示有理數(shù)﹣1和x.
(1)若AB=4時(shí),則x的值為 ;
(2)當(dāng)x=7時(shí),點(diǎn)A,B分別以每秒1個(gè)單位長(zhǎng)度和2個(gè)單位長(zhǎng)度的速度同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng).求經(jīng)過(guò)多少秒后,點(diǎn)A到原點(diǎn)的距離是點(diǎn)B到原點(diǎn)的距離的2倍;
(3)如圖,點(diǎn)A,B,C,D四點(diǎn)在數(shù)軸上分別表示的數(shù)為﹣4,﹣1,2,6.是否存在點(diǎn)P在數(shù)軸上,使得點(diǎn)P到這四點(diǎn)的距離總和的最?若存在,請(qǐng)直接寫(xiě)點(diǎn)P的位置和距離總和的最小值.若不存在,請(qǐng)說(shuō)明理由;
(4)某一直線(xiàn)沿街有2020戶(hù)民,假定相鄰兩戶(hù)居民間隔相同,分別記為a1,a2,a3,a4,a5,…,a2020.某餐飲公司想為這2020戶(hù)居民提供早餐,決定在路旁建立一個(gè)快餐店P.請(qǐng)問(wèn)點(diǎn)P選在何處,才能使這2020戶(hù)居民到點(diǎn)P的距離總和最小?試說(shuō)明原因.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:線(xiàn)段.
(1)如圖1,點(diǎn)沿線(xiàn)段自點(diǎn)向點(diǎn)以厘米秒運(yùn)動(dòng),同時(shí)點(diǎn)沿線(xiàn)段自點(diǎn)向點(diǎn)以厘米秒運(yùn)動(dòng),經(jīng)過(guò)_________秒,、兩點(diǎn)相遇.
(2)如圖1,點(diǎn)沿線(xiàn)段自點(diǎn)向點(diǎn)以厘米秒運(yùn)動(dòng),點(diǎn)出發(fā)秒后,點(diǎn)沿線(xiàn)段自點(diǎn)向點(diǎn)以厘米秒運(yùn)動(dòng),問(wèn)再經(jīng)過(guò)幾秒后、相距?
(3)如圖2:,,,點(diǎn)繞著點(diǎn)以度秒的速度逆時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)沿直線(xiàn)自點(diǎn)向點(diǎn)運(yùn)動(dòng),假若點(diǎn)、兩點(diǎn)能相遇,直接寫(xiě)出點(diǎn)運(yùn)動(dòng)的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形中,,點(diǎn)是射線(xiàn)上一動(dòng)點(diǎn),以為邊向右側(cè)作等邊,點(diǎn)的位置隨點(diǎn)的位置變化而變化.
(1)如圖1,當(dāng)點(diǎn)在菱形內(nèi)部或邊上時(shí),連接,與的數(shù)量關(guān)系是 ,與的位置關(guān)系是 ;
(2)當(dāng)點(diǎn)在菱形外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,
請(qǐng)說(shuō)明理由(選擇圖2,圖3中的一種情況予以證明或說(shuō)理).
(3) 如圖4,當(dāng)點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上時(shí),連接,若 , ,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓的直徑,AC是一條弦,D是AC的中點(diǎn),DE⊥AB于點(diǎn)E且DE交AC于點(diǎn)F,DB交AC于點(diǎn)G,若,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】西安地鐵1號(hào)線(xiàn)在2013年9月15日通車(chē)之前,為了解市民對(duì)地鐵票的定價(jià)意向,市場(chǎng)價(jià)局向社會(huì)公開(kāi)征集定價(jià)意見(jiàn).某學(xué)校課外小組也開(kāi)展了“你認(rèn)為西安地鐵起步價(jià)定為多少合適?”的問(wèn)卷調(diào)查,征求市民的意見(jiàn),并將某社區(qū)市民的問(wèn)卷調(diào)查結(jié)果整理后制成了如下統(tǒng)計(jì)圖:根據(jù)統(tǒng)計(jì)圖解答:
(1)同學(xué)們一共隨機(jī)調(diào)查了______人;
(2)請(qǐng)你把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖,認(rèn)為“起步價(jià)5元合適”的扇形圓心角的度數(shù)是______°;
(4)假定該社區(qū)有1萬(wàn)人,請(qǐng)估計(jì)該社區(qū)支持“起步價(jià)為3元”的市民大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育用品商場(chǎng)預(yù)測(cè)某品牌運(yùn)動(dòng)服能夠暢銷(xiāo),就用32000元購(gòu)進(jìn)了一批這種運(yùn)動(dòng)服,上市后很快脫銷(xiāo),商場(chǎng)又用68000元購(gòu)進(jìn)第二批這種運(yùn)動(dòng)服,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.
(1)該商場(chǎng)兩次共購(gòu)進(jìn)這種運(yùn)動(dòng)服多少套?
(2)如果這兩批運(yùn)動(dòng)服每套的售價(jià)相同,且全部售完后總利潤(rùn)不低于20%,那么每套售價(jià)至少是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com