如圖,在□ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F,連接BD.

(1)求證:△ABE≌△CDF;

(2)若AB=DB,求證:四邊形DFBE是矩形.

 

【答案】

(1)根據(jù)平行四邊形的性質(zhì)可得AB=CD,∠A=∠C,CD∥AB,即得∠CDB=∠DBA,根據(jù)角平分線的性質(zhì)可得∠ABE=∠EBD=∠ABD,∠CDF=∠BDF=∠CDB,即可證得結(jié)論;

(2)先根據(jù)等腰三角形三線合一的性質(zhì)證得BE⊥AD,由△ABE≌△CDF可得AE=CF,再結(jié)合平行四邊形的性質(zhì)可得DE=BF,從而證得結(jié)論.

【解析】

試題分析:(1)在□ABCD中,AB=CD,∠A=∠C

∵CD∥AB

∴∠CDB=∠DBA

∵BE平分∠ABD

∴∠ABE=∠EBD=∠ABD

同理∠CDF=∠BDF=∠CDB

∴∠ABE=∠CDF

∴△ABE≌△CDF;

(2)∵AB=DB,BE平分∠ABD

∴BE⊥AD

∴∠BED=90°

∵△ABE≌△CDF

∴AE="CF"

在□ABCD中,AD=BC,

∴AD-AE=BC-CF

∴DE=BF,AD∥BC

∴四邊形DFBE是矩形.

考點(diǎn):平行四邊形的性質(zhì),角平分線的性質(zhì),矩形的判定

點(diǎn)評(píng):平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考常見題,一般難度不大,需熟練掌握.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點(diǎn)E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)感知:如圖①,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BA、AD的延長(zhǎng)線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點(diǎn)O是AD邊的垂直平分線與BD的交點(diǎn),點(diǎn)E、F分別在OA、AD的延長(zhǎng)線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點(diǎn)O,連接CE,則△CBE的周長(zhǎng)是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習(xí)冊(cè)答案