【題目】凸四邊形ABCD的兩條對(duì)角線和兩條邊的長(zhǎng)度都為1,則四邊形ABCD中最大內(nèi)角度數(shù)為( )
A.150°B.135°C.120°D.105°
【答案】A
【解析】
首先,這兩條相等的邊不可能是對(duì)邊,如果兩條對(duì)邊相等,則對(duì)角線至少有一條大于這兩條邊.也就是說這兩條相等的邊是鄰邊(設(shè)為AB、AC),加上連接這兩條邊的那條對(duì)角線(BC),就是一個(gè)等邊三角形(ABC);當(dāng)另一條對(duì)角線(AD)垂直于對(duì)角線(BC)時(shí),∠BDC是最大內(nèi)角150°;當(dāng)AD不垂直于BC時(shí),∠BDC介于150°到90°之間,而∠ABD和∠ACD都介于75°到150°之間.所以最大的內(nèi)角是150°.
解:如圖:
∵AB=AC=BC,
∴△ABC是等邊三角形,
當(dāng)另一條對(duì)角線AD⊥BC時(shí),∠BDC=150°;
當(dāng)AD不垂直于BC時(shí),∠BDC介于150°到90°之間,而∠ABD和∠ACD都介于75°到150°之間.
所以最大的內(nèi)角是150°.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是菱形外一點(diǎn),DE∥AC,CE∥BD.
(1)求證:四邊形DECO是矩形;
(2)連接AE交BD于點(diǎn)F,當(dāng)∠ADB=30°,DE=3時(shí),求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張長(zhǎng)方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個(gè)頂點(diǎn)都在橫格線上.已知α=36°,求長(zhǎng)方形卡片的周長(zhǎng).
(精確到1mm,參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對(duì)角線AC
重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長(zhǎng)為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列三個(gè)判斷中:①當(dāng)x>0時(shí),y>0;②若a=﹣1,則b=4;③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;正確的是( 。
A. ① B. ② C. ③ D. ①②③都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)F在線段CE上,且四邊形BFED為菱形,則CF的為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△A1AC1是由△ABC繞某點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得到的,△ABC的頂點(diǎn)坐標(biāo)分A(﹣1,6),B(﹣5,0),C(﹣5,6).
(1)求旋轉(zhuǎn)中心P和點(diǎn)A1,C1的坐標(biāo);
(2)在所給網(wǎng)格中畫出△A1AC1繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得到的圖形;
(3)在所給網(wǎng)格中畫出與△A1AC1關(guān)于點(diǎn)P成中心對(duì)稱的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時(shí),測(cè)得鐵塔AB落在斜坡上的影子BD的長(zhǎng)為6米,落在廣告牌上的影子CD的長(zhǎng)為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,點(diǎn)E.F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF、則EF=BE+DF,試說明理由;
(2)類比引申
如圖2,在四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E.F分別在邊BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時(shí),仍有EF=BE+DF;
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,猜想BD、DE、EC滿足的等量關(guān)系,并寫出推理過程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com