【題目】閱讀下面材料:
定義:與圓的所有切線和割線都有公共點(diǎn)的幾何圖形叫做這個(gè)圓的關(guān)聯(lián)圖形.
問(wèn)題:⊙O的半徑為1,畫(huà)一個(gè)⊙O的關(guān)聯(lián)圖形.
在解決這個(gè)問(wèn)題時(shí),小明以O為原點(diǎn)建立平面直角坐標(biāo)系xOy進(jìn)行探究,他發(fā)現(xiàn)能畫(huà)出很多⊙O的關(guān)聯(lián)圖形,例如:⊙O本身和圖1中的△ABC(它們都是封閉的圖形),以及圖2中以O為圓心的(它是非封閉的形),它們都是⊙O的關(guān)聯(lián)圖形.而圖2中以P,Q為端點(diǎn)的一條曲線就不是⊙O的關(guān)聯(lián)圖形.
參考小明的發(fā)現(xiàn),解決問(wèn)題:
(1)在下列幾何圖形中,①⊙O的外切正多邊形;②⊙O的內(nèi)接正多邊形;③⊙O的一個(gè)半徑大于1的同心圓;⊙O的關(guān)聯(lián)圖形是______(填序號(hào)).
(2)若圖形G是⊙O的關(guān)聯(lián)圖形,并且它是封閉的,則圖形G的周長(zhǎng)的最小值是____.
(3)在圖2中,當(dāng)⊙O的關(guān)聯(lián)圖形的弧長(zhǎng)最小時(shí),經(jīng)過(guò)D,E兩點(diǎn)的直線為y=____.
(4)請(qǐng)你在備用圖中畫(huà)出一個(gè)⊙O的關(guān)聯(lián)圖形,所畫(huà)圖形的長(zhǎng)度l小于(2)中圖形G的周長(zhǎng)的最小值,并寫(xiě)出l的值(直接畫(huà)出圖形,不寫(xiě)作法).
【答案】(1)①③;(2)2π;(3)y=-x-;(4)π+2.
【解析】
(1)根據(jù)與圓的所有切線和割線都有公共點(diǎn)的幾何圖形叫做這個(gè)圓的關(guān)聯(lián)圖形,可得答案;
(2)根據(jù)圓的關(guān)聯(lián)圖形周長(zhǎng),可得封閉的關(guān)聯(lián)圖形,根據(jù)圓的關(guān)聯(lián)圖形的周長(zhǎng)最小是它本身,可得答案;
(3)根據(jù)⊙O的關(guān)聯(lián)圖形 的弧長(zhǎng)最小,可得DE是圓O的切線,可得答案;
(4)根據(jù)圓的關(guān)聯(lián)圖形的長(zhǎng)度小于2π,可得圓的關(guān)聯(lián)圖形是非封閉的,可得答案.
解:(1)①⊙O的外切正多邊形與圓的所有切線和割線都有公共點(diǎn),故①說(shuō)法正確;
②⊙O的內(nèi)接正多邊形與圓的有的切線沒(méi)有公共點(diǎn),故②說(shuō)法錯(cuò)誤;
③⊙O的一個(gè)半徑大于1的同心圓與圓的所有切線和割線都有公共點(diǎn),故③說(shuō)法正確;
故答案為:①③;
(2)若圖形G是⊙O的關(guān)聯(lián)圖形,并且它是封閉的,則圖形G是它本身,圖形G的周長(zhǎng)的最小值是2π, 故答案為:2π;
(3)由當(dāng)⊙O的關(guān)聯(lián)圖形的弧長(zhǎng)最小時(shí),得DE是圓的一條切線且OD=OE,
設(shè)DE的解析式是y=-x+b,由DE于圓相切,得
解得b=-, 故答案為:y=-x-;
(4)如圖:畫(huà)圖形是非封閉的,l長(zhǎng)度=π+2:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖4為函數(shù)與的圖象,下列結(jié)論:
(1);(2);(3)當(dāng)時(shí),;(4),其中正確的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,將斜邊BC繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)至BD,使,,過(guò)點(diǎn)D作,于點(diǎn)E.
(1)求證;
(2)若,,求在上述旋轉(zhuǎn)過(guò)程中,線段BC掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在的網(wǎng)格圖中,每個(gè)小正方形的邊長(zhǎng)均為,點(diǎn)和的頂點(diǎn)均為小正方形的頂點(diǎn).
(1)以點(diǎn)O為位似中心,在網(wǎng)格圖中作△ABC,使它與△ABC位似,且相似比為2;
(2)如圖②,某臺(tái)風(fēng)過(guò)后,李明發(fā)現(xiàn)一棵被吹傾斜的大樹(shù)與地面的夾角為,且其影子長(zhǎng)為4.5米,同時(shí)李明還發(fā)現(xiàn)大樹(shù)樹(shù)干和影子形成的△DEF與△ABC相似(樹(shù)干對(duì)應(yīng)邊),求大樹(shù)在被吹傾斜前的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為4,AB,AC是⊙O的兩條條弦,AB=,點(diǎn)O到AC的距離為,試求出∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為2,O到頂點(diǎn)A的距離為5,點(diǎn)B在⊙O上,點(diǎn)P是線段AB的中點(diǎn),若B在⊙O上運(yùn)動(dòng)一周.
(1)點(diǎn)P的運(yùn)動(dòng)路徑是一個(gè)圓;
(2)△ABC始終是一個(gè)等邊三角形,直接寫(xiě)出PC長(zhǎng)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證: BE=CF;
(2)請(qǐng)?zhí)骄啃D(zhuǎn)角等于多少度時(shí),四邊形ABDF為菱形,證明你的結(jié)論;
(3)在(2)的條件下,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在中,,是平面內(nèi)任意一點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)與相等的角度,得到線段,連接.
①如圖①,若是線段上的一點(diǎn),且,,則的大小 (度),的長(zhǎng) ;
②如圖②,點(diǎn)是延長(zhǎng)線上的一點(diǎn),若是內(nèi)部射線上任意一點(diǎn),連接,與的數(shù)量關(guān)系是什么?與的數(shù)量關(guān)系是什么?并分別給予證明:
(2)如圖③,在中,,,,是上的任意一點(diǎn),連接,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到線段,連接,求線段長(zhǎng)度的最小值(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⊙O的直徑為10cm,弦AB平行弦CD,這兩弦長(zhǎng)分別為6cm和8cm,它們之間的距離為________cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com