已知a>b,則下列變形中錯誤的是( )
A.a(chǎn)+2>b+2
B.-3a<-3b
C.
D.1-a>1-b
【答案】分析:根據(jù)不等式的性質(zhì)分析判斷.
解答:解:A、根據(jù)不等式的性質(zhì)1,在a>b的兩邊都加2,不等號方向不改變,故正確;
B、根據(jù)不等式的性質(zhì)3,在a>b的兩邊都乘-3,不等號方向改變,故正確;
C、根據(jù)不等式的性質(zhì)2,在a>b的兩邊都除以2,不等號方向不改變,故正確;
D、先根據(jù)不等式的性質(zhì)3,在a>b的兩邊都乘-1,不等號方向改變,得-a<-b,再根據(jù)性質(zhì)1得1-a<1-b,故錯誤;
故選D.
點評:不等式的性質(zhì):
(1)不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.
(2)不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變.
(3)不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、給出下列命題
(1)一組數(shù)不可能有兩個眾數(shù);
(2)數(shù)據(jù)0,-1,1,2,-1的中位數(shù)是1;
(3)將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上(或減去)同一個常數(shù)后,方差恒不變;
(4)已知2,-1,0,x1,x2的平均數(shù)是1,則x1+x2=4.
其中錯誤的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,已知直線:y=
3
3
x+
3
與直角坐標(biāo)系xOy的x軸交于點A,與y軸交于點B,點M為x軸正半軸上一點,以點M為圓心的⊙M與直線AB相切于B點,交x軸于C、D兩點,與y軸交于另一點E.
(1)求圓心M的坐標(biāo);
(2)如圖2,連接BM延長交⊙M于F,點N為
CF
上任一點,連DN交BF于Q,連FN并延長交x軸于點P.則CP與MQ有何數(shù)量關(guān)系?證明你的結(jié)論;
(3)如圖3,連接BM延長交⊙M于F,點N為
CF
上一動點,NH⊥x軸于H,NG⊥BF于G,連接GH,當(dāng)N點運動時,下列兩個結(jié)論:①NG+NH為定值;②GH的長度不變;其中只有一個是正確的,請你選擇正確的結(jié)論加以證明,并求出其值?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、仿照例子解題:“已知(x2+2x-1)(x2+2x+2)=4,求x2+2x的值”,
在求解這個題目中,運用數(shù)學(xué)中的整體換元可以使問題變得簡單,具體方法如下:
解:設(shè)x2+2x=y,則原方程可變?yōu)椋海▂-1)(y+2)=4
整理得y2+y-2=4即:y2+y-6=0
解得y1=-3,y2=2
∴x2+2x的值為-3或2
請仿照上述解題方法,完成下列問題:
已知:(x2+y2-3)(2x2+2y2-4)=24,求x2+y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•高安市二模)如圖,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形,現(xiàn)給出(Ⅰ)、(Ⅱ)、(Ⅲ)三個命題:
命題(Ⅰ):圖①中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅱ):圖②中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅲ):圖③中,若EF垂直平分對角線AC,變BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
請解決下列問題:
(1)命題(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命題嗎?請你在其中選擇一個,并證明它是真命題或假命題;
(2)畫出一個新的矩形內(nèi)接菱形(即與你在(1)中所確認的,但不全等的內(nèi)接菱形).
(3)試探究比較圖①,②,③中的四邊形ABGH、EFGH、AECF的面積大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N.
試解答下列問題:
(1)在圖1中,若∠A+∠D=80°,則∠B+∠C=
80°
80°
;仔細觀察,在圖2中“8字形”的個數(shù):
6
6
個;
(2)在圖2中,若∠DAO=50°,∠OCB=40°,∠P=35°,試求∠D的度數(shù);
(3)在圖2中,若設(shè)∠D=x°,∠B=y°,其它條件不變,試求∠P的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案