(2003•河南)已知:如圖,ABCD是⊙O的內(nèi)接正方形,AB=4,F(xiàn)是BC的中點,AF的延長線交⊙O于點E,則AE的長是( )

A.
B.
C.
D.
【答案】分析:依據(jù)勾股定理可得AF的長,再根據(jù)相交弦定理可以求得FE的長,即可得到AE的長.
解答:解:連接CE,由相交弦定理知,
AF•EF=BF•CF=4,
由勾股定理得,AF=2,
∴FE=,
AE=AF+EF=
故選A.
點評:本題利用了相交弦定理,正方形的性質(zhì),勾股定理,中點的性質(zhì)求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2003•河南)已知:如圖,A、O、B在同一條直線上,∠AOC=
12
∠BOC+30°,OE平分∠BOC,則∠BOE=
50
50
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2003•河南)已知m=
1
2+
3
,n=
1
2-
3
,求(1+
2n2
m2-n2
)÷(1+
2n
m-n
)
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2003•河南)已知:如圖,點P、A分別是直線l上和直線l外的點.求作:⊙O,使⊙O切直線l于點P,且經(jīng)過點A(保留作圖痕跡,寫出作法)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2003•河南)已知,如圖,在平面直角坐標系中,以BC為直徑的⊙M交x軸正半軸于點A、B,交y軸正半軸于點E、F,過點C作CD垂直y軸,垂足為點D,連接AM并延長交⊙M于點P,連接PE.
(1)求證:∠FAO=∠EAM;
(2)若二次函數(shù)y=-x2+px+q的圖象經(jīng)過點B、C、E,且以C為頂點,當點B的橫坐標等于2時,四邊形OECB的面積是,求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年河南省中考數(shù)學試卷(解析版) 題型:解答題

(2003•河南)已知,如圖,在平面直角坐標系中,以BC為直徑的⊙M交x軸正半軸于點A、B,交y軸正半軸于點E、F,過點C作CD垂直y軸,垂足為點D,連接AM并延長交⊙M于點P,連接PE.
(1)求證:∠FAO=∠EAM;
(2)若二次函數(shù)y=-x2+px+q的圖象經(jīng)過點B、C、E,且以C為頂點,當點B的橫坐標等于2時,四邊形OECB的面積是,求這個二次函數(shù)的解析式.

查看答案和解析>>

同步練習冊答案