如圖,在△ABC中,AB=AC,∠BAC=540,以AB為直徑的⊙O分別交AC,BC       于點D,E,過點B作⊙O的切線,交AC的延長線于點F。

(1)求證:BE=CE;

(2)求∠CBF的度數(shù);

(3)若AB=6,求的長。

 

【答案】

解:(1)如圖,連接AE,

∵AB是⊙O的直徑,

∴∠AEB=900,即AE⊥BC。

又∵AB=AC,∴BE=CE。

(2)∵∠BAC=540,AB=AC,∴∠ABC=630。

又∵BF是⊙O的切線,∴∠ABF=900。

∴∠CBF=∠ABF一∠ABC=270。

(3)連接OD,

∵OA=OD,∠BAC=540,∴∠AOD=720。

又∵AB=6,∴OA=2。

。

【解析】(1)連接AE,則根據(jù)直徑所對圓周角是直角的性質(zhì)得AE⊥BC,從而根據(jù)等腰三角形三線合一的性質(zhì)得出結(jié)論。

(2)由∠BAC=540,AB=AC,根據(jù)等腰三角形等邊對等角的性質(zhì)和三角形內(nèi)角和等于零180度求得∠ABC=630;由切線垂直于過切點直徑的性質(zhì)得∠ABF=900,從而由∠CBF=∠ABF一∠ABC得出結(jié)論。

(3)連接OD,根據(jù)同弧所對圓周角是圓心角一半的性質(zhì),求得∠AOD=720,根據(jù)弧長公式即可求。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案