【題目】計算:2tan60°﹣( )﹣1+(﹣2)2×(2017﹣sin45°)0﹣|﹣ |
【答案】解:原式=2× ﹣3+4×1﹣2 =1
【解析】原式利用特殊角的三角函數(shù)值,零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及絕對值的代數(shù)意義化簡,計算即可得到結(jié)果.
【考點精析】通過靈活運(yùn)用零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì),掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點A(a,b),將OA繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°至OA',則點A'的坐標(biāo)是_______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點E,PN交CD于點F.
(1)當(dāng)△PMN所放位置如圖①所示時,求出∠PFD與∠AEM的數(shù)量關(guān)系;
(2)當(dāng)△PMN所放位置如圖②所示時,求證:∠PFD-∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點O,且∠DON=15°,∠PEB=30°,求∠N的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( )
A. ∠1=∠2 B. ∠A =∠2 C. △ABC≌△CED D. ∠A與∠D互為余角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證:AD平分∠BAC;
(2)直接寫出AB+AC與AE之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀以下內(nèi)容:
已知實數(shù)x,y滿足x+y=2,且求k的值.
三位同學(xué)分別提出了以下三種不同的解題思路:
甲同學(xué):先解關(guān)于x,y的方程組,再求k的值.
乙同學(xué):先將方程組中的兩個方程相加,再求k的值.
丙同學(xué):先解方程組,再求k的值.
(2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對你選擇的思路進(jìn)行簡要評價.
(評價參考建議:基于觀察到題目的什么特征設(shè)計的相應(yīng)思路,如何操作才能實現(xiàn)這些思路、運(yùn)算的簡潔性,以及你依此可以總結(jié)什么解題策略等等)
請先在以下相應(yīng)方框內(nèi)打勾,再解答相應(yīng)題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,有一寬度為1的刻度尺沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和點Q,交直線AC于點M和點N,交x軸于點E和點F.
(1)求點A、B、C的坐標(biāo);
(2)當(dāng)點M和點N都在線段AC上時,連接EN,如果點E的坐標(biāo)為(4,0),求sin∠ANE的值;
(3)在刻度尺平移過程中,當(dāng)以點P、Q、N、M為頂點的四邊形是平行四邊形時,求點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y1=2x+3與直線l2:y2=kx-1交于點A,點A的橫坐標(biāo)為-1,且直線l1與x軸交于點B,與y軸交于點D,直線l2與y軸交于點C.
(1)直線l2對應(yīng)的函數(shù)表達(dá)式;
(2)連接BC,求S△ABC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com