【題目】如圖,在RtABC中,C=90°,ABC的平分線交AC于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),O過B、D兩點(diǎn),且分別交AB、BC于點(diǎn)E、F.

(1)求證:AC是O的切線;

(2)已知AB=10,BC=6,求O的半徑r.

【答案】(1)證明見解析(2)

【解析】

試題分析:(1)連接OD.欲證AC是O的切線,只需證明ACOD即可;

(2)利用平行線截線段成比例推知;然后將圖中線段間的和差關(guān)系代入該比例式,通過解方程即可求得r的值,即O的半徑r的值.

試題解析:(1)證明:連接OD.

OB=OD,

∴∠OBD=ODB(等角對(duì)等邊);

BD平分ABC,

∴∠ABD=DBC,

∴∠ODB=DBC(等量代換),

ODBC(內(nèi)錯(cuò)角相等,兩直線平行);

∵∠C=90°(已知),

∴∠ADO=90°(兩直線平行,同位角相等),

ACOD,即AC是O的切線;

(2)解:由(1)知,ODBC,

(平行線截線段成比例),

,

解得r=,即O的半徑r為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年,山西省公共財(cái)政同比增長2.2%,記作+2.2%,那么,一般公共服務(wù)支出同比下降6.3%,應(yīng)記作(  )

A.6.3%B.6.3%C.8.5%D.8.5%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】與紅磚、足球類似的圖形是( )

A. 長方形、圓 B. 長方體、圓

C. 長方體、球 D. 長方形、球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式a2﹣4因式分解的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三邊a,b,c中,a=b-1,c=b+1,又已知關(guān)于x的方程4x2-20x+b+12=0的根恰為b的值,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°,AC=1cm,BC=2cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿折線ACCBBA運(yùn)動(dòng),最終回到點(diǎn)A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s),線段AP的長度為y(cm),則能夠反映y與x之間函數(shù)關(guān)系的圖象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四個(gè)互不相等的整數(shù)a,b,c,d滿足abcd=77,則a+b+c+d=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在RtABC,ABC=90°C=60°,現(xiàn)將一個(gè)足夠大的直角三角板的頂點(diǎn)P放在斜邊AC上.

(1)設(shè)三角板的兩直角邊分別交邊AB、BC于點(diǎn)M、N.

當(dāng)點(diǎn)P是AC的中點(diǎn)時(shí),分別作PEAB于點(diǎn)E,PFBC于點(diǎn)F,得到圖1,寫出圖中的一對(duì)全等三角形;

的條件下,寫出與PEM相似的三角形,并直接寫出PN與PM的數(shù)量關(guān)系.

(2)移動(dòng)點(diǎn)P,使AP=2CP,將三角板繞點(diǎn)P旋轉(zhuǎn),設(shè)旋轉(zhuǎn)過程中三角板的兩直角邊分別交邊AB、BC于點(diǎn)M、N(PM不與邊AB垂直,PN不與邊BC垂直);或者三角板的兩直角邊分別交邊AB、BC的延長線與點(diǎn)M、N.

請(qǐng)?jiān)趥溆脠D中畫出圖形,判斷PM與PN的數(shù)量關(guān)系,并選擇其中一種圖形證明你的結(jié)論;

的條件下,當(dāng)PCN是等腰三角形時(shí),若BC=3cm,則線段BN的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:m2+2m=.

查看答案和解析>>

同步練習(xí)冊(cè)答案