直線y=-x+b與雙曲線y=-(x<0)交于點(diǎn)A,與x軸交于點(diǎn)B,則OA2-OB2=  

2

【解析】

試題分析:由直線y=-x+b與雙曲線y=-(x<0)交于點(diǎn)A可知:x+y=b,xy=-1,又OA2=x2+y2,OB2=b2,由此即可求出OA2-OB2的值.

解:∵直線y=-x+b與雙曲線y=-(x<0)交于點(diǎn)A,

設(shè)A的坐標(biāo)(x,y),

∴x+y=b,xy=-1,

而直線y=-x+b與x軸交于B點(diǎn),

∴OB=b

∴又OA2=x2+y2,OB2=b2,

∴OA2-OB2=x2+y2-b2=(x+y)2-2xy-b2=b2+2-b2=2.

考點(diǎn):一次函數(shù)、反比例函數(shù)的性質(zhì)

點(diǎn)評(píng):函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知直線y=2x-2與雙曲線圖y=
kx
交于點(diǎn)A(2,y)、B(m,n).
(1)求反比例函數(shù)的解析式;
(2)求B點(diǎn)的坐標(biāo);
(3)寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,經(jīng)過(guò)點(diǎn)A,C,B的拋物線的一部分與經(jīng)過(guò)點(diǎn)A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中精英家教網(wǎng)點(diǎn),且P(-1,0),C(
2
-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過(guò)點(diǎn)A,E,B的拋物線的解析式;
(2)若點(diǎn)F在“雙拋物線”上,且S△FAP=S△CAP,請(qǐng)你直接寫出點(diǎn)F的坐標(biāo);
(3)如果一條直線與“雙拋物線”只有一個(gè)交點(diǎn),那么這條直線叫做“雙拋物線”的切線.若過(guò)點(diǎn)E與x軸平行的直線與“雙拋物線”交于點(diǎn)G,求經(jīng)過(guò)點(diǎn)G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,經(jīng)過(guò)點(diǎn)A,C,B的拋物線的一部分與經(jīng)過(guò)點(diǎn)A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中點(diǎn),且P(-1,0),C(數(shù)學(xué)公式-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過(guò)點(diǎn)A,E,B的拋物線的解析式;
(2)如果一條直線與“雙拋物線”只有一個(gè)交點(diǎn),那么這條直線叫做“雙拋物線”的切線.若過(guò)點(diǎn)E與x軸平行的直線與“雙拋物線”交于點(diǎn)G,求經(jīng)過(guò)點(diǎn)G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,經(jīng)過(guò)點(diǎn)A,C,B的拋物線的一部分與經(jīng)過(guò)點(diǎn)A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中點(diǎn),且P(-1,0),C(數(shù)學(xué)公式-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過(guò)點(diǎn)A,E,B的拋物線的解析式;
(2)若點(diǎn)F在“雙拋物線”上,且S△FAP=S△CAP,請(qǐng)你直接寫出點(diǎn)F的坐標(biāo);
(3)如果一條直線與“雙拋物線”只有一個(gè)交點(diǎn),那么這條直線叫做“雙拋物線”的切線.若過(guò)點(diǎn)E與x軸平行的直線與“雙拋物線”交于點(diǎn)G,求經(jīng)過(guò)點(diǎn)G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年新人教版九年級(jí)(上)期末數(shù)學(xué)復(fù)習(xí)試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,經(jīng)過(guò)點(diǎn)A,C,B的拋物線的一部分與經(jīng)過(guò)點(diǎn)A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中點(diǎn),且P(-1,0),C(-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過(guò)點(diǎn)A,E,B的拋物線的解析式;
(2)若點(diǎn)F在“雙拋物線”上,且S△FAP=S△CAP,請(qǐng)你直接寫出點(diǎn)F的坐標(biāo);
(3)如果一條直線與“雙拋物線”只有一個(gè)交點(diǎn),那么這條直線叫做“雙拋物線”的切線.若過(guò)點(diǎn)E與x軸平行的直線與“雙拋物線”交于點(diǎn)G,求經(jīng)過(guò)點(diǎn)G的“雙拋物線”切線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案