(1999•溫州)如圖,△ABC內(nèi)接于⊙O,AE是⊙O的直徑,AE與BC交于點(diǎn)D,且D是OE的中點(diǎn),則tan∠ABC•tan∠ACB=   
【答案】分析:連接BE、CE,由圓周角定理,易知∠AEB=∠ACB,∠ABC=∠AEC,只需求出tan∠AEC•tan∠AEB的值即可.
易證△ADC∽△BDC,△ADB∽△CDE,可得,.兩式相乘,即可求得tan∠ABC•tan∠ACB的值.
解答:解:連接BE、CE,則∠ABE=∠ACE=90°.
∵∠EAC=∠CBE,∠BED=∠ACB,
∴△ADC∽△BDE,
.   ①
同理可由△ADB∽△CDE,得.  ②
①×②,得==3.
Rt△AEC中,tan∠AEC=
同理得tan∠AEB=
故tan∠AEC•tan∠AEB==3.
∵∠EAC=∠CBE,∠BED=∠ACB,
∴tan∠ABC•tan∠ACB=3.
點(diǎn)評(píng):此題主要考查了銳角三角函數(shù)的定義、圓周角定理及相似三角形的判定和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年河南省中考數(shù)學(xué)模擬試卷(01)(解析版) 題型:解答題

(1999•溫州)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《三角形》(03)(解析版) 題型:解答題

(1999•溫州)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•溫州)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年浙江省溫州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•溫州)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點(diǎn)P在x軸上,與y軸交于點(diǎn)Q,過坐標(biāo)原點(diǎn)O,作OA⊥PQ,垂足為A,且OA=,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(1999•溫州)如圖,△ABC的外接圓⊙O的直徑BE交AC于點(diǎn)D,已知弧BC等于120°,,則關(guān)于x的一元二次方程根的情況是( )

A.沒有實(shí)數(shù)恨
B.有兩個(gè)相等的正實(shí)數(shù)根
C.有兩個(gè)相等的實(shí)數(shù)根
D.有兩個(gè)不相等的正實(shí)數(shù)根

查看答案和解析>>

同步練習(xí)冊(cè)答案