若點P(m、n)、Q(n+2,2m)關(guān)于原點中心對稱,則m、n的值是


  1. A.
    m=2,n=-4
  2. B.
    m=-2,n=4
  3. C.
    m=4,n=-2
  4. D.
    m=-4,n=2
A
分析:平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y),記憶方法是結(jié)合平面直角坐標(biāo)系的圖形記憶.
解答:∵點P(m、n)、Q(n+2,2m)關(guān)于原點中心對稱,
∴m=-(2+n),n=-2m,
解得:m=2,n=-4.
故選A.
點評:用到的知識點為:兩點關(guān)于原點對稱,這兩點的橫縱坐標(biāo)互為相反數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過三點A(-1,0),B(3,0),C(0,-3),它的頂點為M,且正比例函數(shù)y=kx的圖象與二次函數(shù)的圖象相交于D、E兩點.
(1)求該二次函數(shù)的解析式和頂點M的坐標(biāo);
(2)若點E的坐標(biāo)是(2,-3),且二次函數(shù)的值小于正比例函數(shù)的值時,試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)試探究:拋物線的對稱軸上是否存在點P,使△PAC為等腰三角形?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、兩個邊長不定的正方形ABCD與AEFG如圖1擺放,將正方形AEFG繞點A逆時針旋轉(zhuǎn)一定角度.
(1)若點E落在BC邊上(如圖2),試探究線段CF與AC的位置關(guān)系并證明;
(2)若點E落在BC的延長線上時(如圖3),(1)中結(jié)論是否仍然成立?若不成立,請說明理由;若成立,加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,A是弧BD的中點,過A點的切線與CB的延長線交于點E.
(1)求證:AB•DA=CD•BE;
(2)若點E在CB延長線上運動,點A在弧BD上運動,使切線EA變?yōu)楦罹EFA,其它條件不精英家教網(wǎng)變,問具備什么條件使原結(jié)論成立?(要求畫出示意圖,注明條件,不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、已知圓心都在y軸上的兩圓相交于A、B兩點,若點A坐標(biāo)是(1,2),則點B的坐標(biāo)為
(-1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若點A(x,0)與B(2,0)的距離為5,則x=
 

查看答案和解析>>

同步練習(xí)冊答案