【題目】如圖所示,在四邊形中,、分別是、的中點(diǎn),、的延長線分別與的延長線交于點(diǎn)、,則(  )

A.B.

C.D.的大小關(guān)系不確定

【答案】B

【解析】

連接BD,取中點(diǎn)I,連接IE,IF,根據(jù)三角形中位線定理得IE2AD,且平行AD,IFBC且平行BC,再利用 ADBC IEAD,求證∠AHE=∠IEF,同理 可證∠BGE=∠IFE,再利用IEIF和∠AHE=∠IEF,∠BGE=∠IFE即可得出結(jié)論.

連接BD,取中點(diǎn)I,連接IE,IF

EF分別是ABCD的中點(diǎn),

IE,IF分別是ABDBDC的中位線,

IE2AD,且平行ADIFBC且平行BC,

ADBC,

IEIF

IEAD,

∴∠AHE=∠IEF,

同理∠BGE=∠IFE

∵在IEF中,IEIF,

∴∠IFE>∠IEF,

∵∠AHE=∠IEF,∠BGE=∠IFE,

∴∠BGE>∠AHE

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,無人機(jī)在空中C處測得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無人機(jī)距地面高度CD米,點(diǎn)A、D、E在同一水平直線上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為αα90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOOM,OA=8,點(diǎn)B為射線OM上的一個(gè)動(dòng)點(diǎn),分別以OB、AB為直角邊,B為直角頂點(diǎn),在OM兩側(cè)作等腰RtOBF、等腰RtABE,連接EFOMP點(diǎn),當(dāng)點(diǎn)B在射線OM上移動(dòng)時(shí),PB的長度是 ( )

A. 3.6 B. 4 C. 4.8 D. PB的長度隨B點(diǎn)的運(yùn)動(dòng)而變化

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的角平分線交于點(diǎn),點(diǎn)45兩部分,則的周長為(  )

A.24B.26C.28D.2628

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE已知BAC=30°,EFAB,垂足為F,連接DF

(1)試說明AC=EF;

(2)求證:四邊形ADFE是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB的大小為αP是∠AOB內(nèi)部的一個(gè)定點(diǎn),且OP2,點(diǎn)EF分別是OA、OB上的動(dòng)點(diǎn),若△PEF周長的最小值等于2,則α=(

A. 30°B. 45°C. 60°D. 15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾不落地,城市更美麗.某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生是否隨手丟垃圾這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上信息,解答下列問題:

(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)所抽取學(xué)生是否隨手丟垃圾情況的眾數(shù)是   ;

(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中經(jīng)常隨手丟垃圾的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=4,AD=5,tanA=,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC以每秒1個(gè)單位長度的速度向中點(diǎn)C運(yùn)動(dòng),過點(diǎn)PPQAB,交折線AD﹣DC于點(diǎn)Q,將線段PQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)PQRABCD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)點(diǎn)R與點(diǎn)B重合時(shí),求t的值;

(2)當(dāng)點(diǎn)PBC邊上運(yùn)動(dòng)時(shí),求線段PQ的長(用含有t的代數(shù)式表示);

(3)當(dāng)點(diǎn)R落在ABCD的外部時(shí),求St的函數(shù)關(guān)系式;

(4)直接寫出點(diǎn)P運(yùn)動(dòng)過程中,PCD是等腰三角形時(shí)所有的t值.

查看答案和解析>>

同步練習(xí)冊(cè)答案