【題目】在平行四邊形ABCD中,點EAD邊上,連接BE、CE,EB平分∠AEC .

(1)如圖1,判斷△BCE的形狀,并說明理由;

(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.

【答案】(1)證明見解析;(2)

【解析】試題分析:1)結(jié)論: 是等腰三角形,根據(jù)平行四邊形的性質(zhì)以及已知條件,只要證明即可.
2先證明四邊形ABCD是矩形,然后分別在 中利用勾股定理即可解決問題.

試題解析:1)如圖1中,結(jié)論:△BCE是等腰三角形.


證明:∵四邊形ABCD是平行四邊形,
BCAD
∴∠CBE=AEB,
BE平分∠AEC,
∴∠AEB=BEC,
∴∠CBE=BEC,
CB=CE,
∴△CBE是等腰三角形.
2如圖2中,∵四邊形ABCD是平行四邊形,∠A=90°,


∴四邊形ABCD是矩形,
∴∠A=D=90°BC=AD=5,
RTECD中,∵∠D=90°,ED=AD-AE=4EC=BC=5,


中,∵∠A=90°AB=3AE=1,


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是同-種蔬菜的兩種裁植方法.甲:四珠順次連結(jié)成為一個菱形,且.乙:四株連結(jié)成一個正方形。其中兩行作物間的距離為行距;一行中相鄰兩株作物的距離為株距:設(shè)這兩種蔬菜充分生長后,每株在地面上的影子近似成一個圓面(相鄰兩圓如圖相切),其中陰影部分的面積表示生長后空隙地面積。設(shè)株距都為,其它客觀因素都相同.則對于下列說法:

甲的行距比乙的;甲的行距為;甲、乙兩種栽植方式,蔬菜形成的影子面積相同;甲的空隙地面積比乙的空隙地面積少.其中正確的個數(shù)為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BDAE于點F,延長AE至點C,使得FC=BC,連接BC

(1)求證:BC是⊙O的切線;

(2)O的半徑為5,tanA=,求FD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以為斜邊作,,,垂足為點,點是線段上一點,連接分別交,過點,交延長線于點,

1)求證:

2)若,求的長;

3)若,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O,BD6cmAD8cm,AB10cm,點E從點B出發(fā),沿BA方向勻速運動,速度為1cm/s;同時,點G從點C出發(fā),沿CB方向勻速運動,速度為2cm/s;當一個點停止運動時,另一個點也停止運動.連接OE,過點GGFBD,設(shè)運動時間為ts)(0t4),解答下列問題:

1)當t為何值時,△BOE是等腰三角形?

2)設(shè)五邊形OEBGF面積為S,試確定St的函數(shù)關(guān)系式;

3)在運動過程中,是否存在某一時刻t,使S五邊形OEBGFSACD1940?若存在,求出t的值;若不存在,請說明理由;

4)在運動過程中,是否存在某一時刻t,使得OB平分∠COE,若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三(3)班學生的家距離學校人數(shù)的頻數(shù)分布直方圖如圖所示,則下列說法中不正確的一項是(

A.初三(3)班共有54名學生,其中家距離學校20-30km的學生人數(shù)為中位數(shù).

B.初三(3)班學生的家距離學校為0-10km的學生人數(shù)的組中值為5km

C.初三(3)班學生的家距離學校為0-10km的學生人數(shù)為眾數(shù)

D.初三(3)班學生的家距離學校各組數(shù)據(jù)的組中值的平均數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△DEF由△ABC平移得到,∠DFE=CDF=30°,∠DEF=90°BEDF于點B.連接CE,AB=3

1)求證:四邊形ACDF為矩形

2)求線段CE的長和△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,.點從點出發(fā),沿方向以每秒個單位長度的速度向終點運動(點不與重合),過點交折線于點為邊問下作正方形落在邊上設(shè)點運動的時間為(秒).

1)直接用含的代數(shù)式表示線段的長.

2)當點落在邊上時,求的值.

3)當正方形重疊部分圖形為四邊形時,設(shè)四邊形的面積為(平方單位),求之間的函數(shù)關(guān)系式.

4)點為邊的中點,直接寫出直線將正方形分成的兩部分圖形的面積比為的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形以點為圓心,以任意長為半徑作弧分別交、兩點,再分別以點為圓心,以大于的長為半徑作弧交于點,作射線于點,若,則矩形的面積等于__________

查看答案和解析>>

同步練習冊答案