闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀

如圖,拋物線y=x2-(m+2)x+3(m-1)與x軸交于A、B(3,0)兩點,與y軸負半軸交于點C,且S△BOC=3S△AOC,
(1)求拋物線的解析式;
(2)在x軸上是否存在一點P,使∠PCB=∠CAB-∠ABC?若存在,求出P點的坐標(biāo);若不存在,請說明理由;
(3)以AB為直徑作⊙O1交y軸于M,N兩點,E為A點左側(cè)x軸上的一個動點,F(xiàn)為EM的中點,NA的延長線交O1F于點Q.當(dāng)E點運動時,給下列兩個結(jié)論:①數(shù)學(xué)公式的值不變;②AQ•O1E的值不變,其中有且只有一個結(jié)論正確,請你選擇正確的結(jié)論證明并求值.

解:(1)∵S△BOC=3S△AOC
∴OB=3OA,
∵B(3,0),
∴A點坐標(biāo)為(-1,0),
∴1+(m+2)+3(m-1)=0,
解得m=0,
故拋物線的解析式為y=x2-2x-3;

(2)假設(shè)存在點P,
則在△PCB中,∠PCB=∠APC-∠ABC(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和),
∵∠PCB=∠CAB-∠ABC,
∴∠CAB=∠APC,
∴AC=PC,
又CO⊥AP,
∴AO=PO(等腰三角形三線合一),
∴點P的坐標(biāo)為(1,0);
故存在點P(1,0),使∠PCB=∠CAB-∠ABC;

(3)當(dāng)E點運動時,AQ•O1E的值不變.
∵A(-1,0),B(3,0),
=1,
∴圓心坐標(biāo)為O1(1,0),
∴OM=ON==,
∴點MN的坐標(biāo)為M(0,),N(0,-),
設(shè)點E坐標(biāo)為(2a,0),則點F坐標(biāo)為(a,),
設(shè)直線O1F的解析式為y=kx+b,

解得,
∴直線O1F的解析式為:y=x-①,
又點A、N的坐標(biāo)為A(-1,0),N(-,0),
∴直線AN的解析式為y=-x-②,
①②聯(lián)立得,
解得
∴點Q坐標(biāo)為(,-),
∴AQ==||,
又∵O1E=1-2a,
∴AQ•O1E=||•(1-2a)=4的值不變.
即當(dāng)E點運動時,AQ•O1E的值不變,不變值為4.
分析:(1)根據(jù)等高的三角形的面積的比等于底邊長的比,由S△BOC=3S△AOC可知,OB=3OA,根據(jù)B(3,0)可得A(-1,0),然后把點A坐標(biāo)代入函數(shù)表達式即可求出m的值,拋物線關(guān)系式即可求出;
(2)根據(jù)三角形的外角性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,只要∠APC=∠CAB即可,即PC=AC,然后求出點P的坐標(biāo);
(3)先分別求出點M、N的坐標(biāo),設(shè)點E的坐標(biāo)為(2b,0),根據(jù)點F為EM的中點表示出點F的坐標(biāo),然后利用待定系數(shù)法分別求出直線O1F與NQ的解析式,從而點Q的坐標(biāo)可得,再利用兩點之間距離公式求出AQ的長度,而O1E=1-2b,從而便可確定正確的結(jié)論并求出其值.
點評:本題主要考查了待定系數(shù)法求二次函數(shù)解析式,三角形的外角性質(zhì),等腰三角形三線合一的性質(zhì)以及兩點間距離的求法,并且運算量較大,需要小心計算,以避免出錯,此題難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,AO.
(1)求點A的坐標(biāo);
(2)以點A、B、O、P為頂點構(gòu)造直角梯形,請求一個滿足條件的頂點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點A(x1,0)、B(x2,0),點A在點B的左側(cè).當(dāng)x=x2-2時,y
0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動點,過點M作x軸的垂線MG,垂足為G,過點M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點,若M點的橫坐標(biāo)為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點M,使矩形MNHG的周長最��?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•揚州)如圖,拋物線y=x2-2x-8交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大�。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點.
(1)求A,B兩點的坐標(biāo);
(2)求拋物線頂點M關(guān)于x軸對稱的點M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�