將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].

(1)如圖①,對△ABC作變換[60°,]得△AB′C′,則S△AB′C′:S△ABC=   ;直線BC與直線B′C′所夾的銳角為   度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB'C',使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.
(1) 3;60(2)60°,2(3)72°,
解:(1) 3;60。
(2)∵四邊形 ABB′C′是矩形,∴∠BAC′=90°。
∴θ=∠CAC′=∠BAC′﹣∠BAC=90°﹣30°=60°.
在 Rt△AB B' 中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B=30°。
∴AB′="2" AB,即。
(3)∵四邊形ABB′C′是平行四邊形,∴AC′∥BB′。
又∵∠BAC=36°,∴θ=∠CAC′=∠ACB=72°。
∴∠C′AB′=∠BAC=36°。
而∠B=∠B,∴△ABC∽△B′BA。∴AB:BB′=CB:AB。
∴AB2=CB•BB′=CB(BC+CB′)。
而 CB′=AC=AB=B′C′,BC=1,∴AB2=1(1+AB),解得,
∵AB>0,∴
(1)根據(jù)題意得:△ABC∽△AB′C′,
∴S△AB′C′:S△ABC=,∠B=∠B′。
∵∠ANB=∠B′NM,∴∠BMB′=∠BAB′=60°。
(2)由四邊形 ABB′C′是矩形,可得∠BAC′=90°,然后由θ=∠CAC′=∠BAC′-∠BAC,即可求得θ的度數(shù),又由含30°角的直角三角形的性質(zhì),即可求得n的值。
(3)由四邊形ABB′C′是平行四邊形,易求得θ=∠CAC′=∠ACB=72°,又由△ABC∽△B′BA,根據(jù)相似三角形的對應邊成比例,易得AB2=CB•BB′=CB(BC+CB′),繼而求得答案
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,連結(jié)BE、AD交于點P. 求證:
(1)D是BC的中點;
(2)△BEC ∽△ADC;
(3)AB× CE=2DP×AD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

九年級上冊的教材第118頁有這樣一道習題:
“在一塊三角形余料ABC中,它的邊BC=120mm,高線AD=80mm.要把它加工成正方形零件(如圖),使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長為多少mm?”
(1)請你解答上題;
(2)若將上題圖中的正方形PQMN改為矩形,其余條件不變,求矩形PQMN的面積S的最大值;
(3)我們把上面習題中的正方形PQMN叫做“BC邊上的△ABC的內(nèi)接正方形”,若在習題的條件下,又知AB=150mm,AC=100mm,請分別寫出AB邊上的△ABC的內(nèi)接正方形的邊長和AC邊上的△ABC的內(nèi)接正方形的邊長(不必寫出過程,只要直接寫出答案即可,結(jié)果精確到1mm);
(4)結(jié)合第(1)、(3)題,若三角形的三邊長分別為a,b,c,各邊上的高分別為ha,hb,hc,要使a邊上的三角形內(nèi)接正方形的面積最大,請寫出a與ha必須滿足的條件(不必寫出過程).                                             

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將△ABC的三邊分別擴大一倍得到△(頂點均在格點上),若它們是以P點為位似中心的位似圖形,則P點的坐標是(    ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1)△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,將△DEF繞點A順時針旋轉(zhuǎn),當DF邊與AB邊重合時,旋轉(zhuǎn)中止.現(xiàn)不考慮旋轉(zhuǎn)開始和結(jié)束時重合的情況,設DE,DF(或它們的延長線)分別交BC(或它的延長線) 于G,H點,如圖(2)

(1)問:始終與△AGC相似的三角形有              
(2)設CG=x,BH=y,求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)圖(2)的情形說明理由)
(3)問:當x為何值時,△AGH是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側(cè),且
AB=DE,∠A=∠D,AF=DC.
(1)求證:四邊形BCEF是平行四邊形,
(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在直角坐標系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E,那么點D的坐標為
A.(,B.(C.(,D.(

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,銳角三角形ABC的邊AB,AC上的高線CE和BF相交于點D,請寫出圖中的兩對相似三角形:    ▲   (用相似符號連接).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在矩形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動,點Q沿DA邊從點D開始向點A以1cm/s的速度移動,P、Q同時出發(fā),用t(s)表示移動時間(0≤t≤6)

小題1:當t為何值時,△QAP為等腰直角三角形?
小題2:當t為何值時,以點Q、A、P為頂點的三角形與△ABC相似?

查看答案和解析>>

同步練習冊答案