【題目】如圖,在RtABC中,∠B=45°,AB=AC,點(diǎn)DBC中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM、DN分別與邊AB、AC交于E、F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF③△BDE≌△ADF;BECF=EF,其中正確結(jié)論是(

A. ①②④ B. ②③④ C. ①②③ D. ①②③④

【答案】C

【解析】

根據(jù)等腰直角三角形的性質(zhì)可得∠CAD=∠B=45°,根據(jù)同角的余角相等求出∠ADF=∠BDE,然后利用“角邊角”證明△BDE和△ADF全等,判斷出正確;根據(jù)全等三角形對(duì)應(yīng)邊相等可得DEDFBEAF,從而得到△DEF是等腰直角三角形判斷出正確;再求出AECF,判斷出正確;根據(jù)BE+CFAF+AE,利用三角形的任意兩邊之和大于第三邊可得BE+CFEF,判斷出錯(cuò)誤

∵∠B=45°ABAC,∴△ABC是等腰直角三角形

∵點(diǎn)DBC中點(diǎn)ADCDBD,ADBC,CAD=45°,∴∠CAD=∠B

∵∠MDN是直角,∴∠ADF+∠ADE=90°

∵∠BDE+∠ADE=∠ADB=90°∴∠ADF=∠BDE

在△BDE和△ADF中,∵,∴△BDE≌△ADF(ASA)正確;

DEDF,BEAF∴△DEF是等腰直角三角形,正確;

AEABBE,CFACAFAECF,正確;

BE+CFAF+AE,BE+CFEF,錯(cuò)誤;

綜上所述正確的結(jié)論有①②③

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線 y=2x+4 x 軸相交于點(diǎn) A,與 y 軸相交于點(diǎn) B

1)求 A,B 兩點(diǎn)的坐標(biāo);

2)過(guò) B 點(diǎn)作直線 BP x 軸相交于 P,且使 OP=2OA,求直線 BP 的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(5,0)已知直線l的解析式為y=kx﹣5.

(1)求拋物線L1的解析式、對(duì)稱軸和頂點(diǎn)坐標(biāo).

(2)若直線l將線段AB分成1:3兩部分,求k的值;

(3)當(dāng)k=2時(shí),直線與拋物線交于M、N兩點(diǎn),點(diǎn)P是拋物線位于直線上方的一點(diǎn),當(dāng)PMN面積最大時(shí),求P點(diǎn)坐標(biāo),并求面積的最大值.

(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L(zhǎng)2

直接寫(xiě)出y隨x的增大而增大時(shí)x的取值范圍;

直接寫(xiě)出直線l與圖象L2有四個(gè)交點(diǎn)時(shí)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)AC的坐標(biāo)分別為(10,0),(0,4),點(diǎn)DOA的中點(diǎn),點(diǎn)PBC上運(yùn)動(dòng),當(dāng)ODP是腰長(zhǎng)為5的等腰三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,A=70°B=50°,點(diǎn)D,E分別為ABAC上的點(diǎn),沿DE折疊,使點(diǎn)A落在BC邊上點(diǎn)F處,若EFC為直角三角形,則BDF的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,3),B,0),AB =6,作∠DBO=ABO,點(diǎn)Hy軸上的點(diǎn),∠CAH=BAOBDy軸于點(diǎn)E,直線DOAC于點(diǎn)C

(1)證明:△ABE為等邊三角形

(2)若CDAB于點(diǎn)F,求線段CD的長(zhǎng);

(3)動(dòng)點(diǎn)PA出發(fā),沿AOB路線運(yùn)動(dòng),速度為1個(gè)單位長(zhǎng)度每秒,到B點(diǎn)處停止運(yùn)動(dòng);動(dòng)點(diǎn)QB出發(fā),沿BOA路線運(yùn)動(dòng),速度為2個(gè)單位長(zhǎng)度每秒,到A點(diǎn)處停止運(yùn)動(dòng).兩點(diǎn)同時(shí)開(kāi)始運(yùn)動(dòng),都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時(shí)刻,作PMCD于點(diǎn)MQNCD于點(diǎn)N.問(wèn)兩動(dòng)點(diǎn)運(yùn)動(dòng)多長(zhǎng)時(shí)間時(shí)△OPM與△OQN全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿BC→CD方向運(yùn)動(dòng),當(dāng)P運(yùn)動(dòng)到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t,APQ的面積為S,則S與t的函數(shù)關(guān)系的圖象是【 】

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,下列幾個(gè)結(jié)論:

①對(duì)稱軸為x=2;②當(dāng)y≤0時(shí),x<0x>4;③函數(shù)解析式為y=﹣x(x+4);④當(dāng)x≤0時(shí),yx的增大而增大.其中正確的結(jié)論有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,邊長(zhǎng)為a、b的矩形,它的周長(zhǎng)為14,面積為10,求a2b+3a3b3+ab2的值;

2)已知a+b8,ab16+c2,求(ab+c2018的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案