【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3交x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).
(1)求此拋物線的解析式;
(2)如圖2,點(diǎn)D為拋物線的頂點(diǎn),連接CD,點(diǎn)P是拋物線上一動(dòng)點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動(dòng),過點(diǎn)P作PE∥y軸交線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PE長(zhǎng)為d,寫出d與t的關(guān)系式(不要求寫出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,連接BD,在BD上有一動(dòng)點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時(shí),求此時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)拋物線的解析式為:y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).
【解析】
(1)由拋物線y=ax2+bx+3與y軸交于點(diǎn)A,可求得點(diǎn)A的坐標(biāo),又OA=OC,可求得點(diǎn)C的坐標(biāo),然后分別代入B,C的坐標(biāo)求出a,b,即可求得二次函數(shù)的解析式;
(2)首先延長(zhǎng)PE交x軸于點(diǎn)H,現(xiàn)將解析式換為頂點(diǎn)解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點(diǎn)C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;
(3)首先,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.
(1)當(dāng)x=0時(shí),y=3,
∴A(0,3)即OA=3,
∵OA=OC,
∴OC=3,
∴C(3,0),
∵拋物線y=ax2+bx+3經(jīng)過點(diǎn)B(﹣1,0),C(3,0)
∴,
解得:,
∴拋物線的解析式為:y=﹣x2+2x+3;
(2)如圖1,延長(zhǎng)PE交x軸于點(diǎn)H,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4),
設(shè)直線CD的解析式為y=kx+b,
將點(diǎn)C(3,0)、D(1,4)代入,得:
,
解得:,
∴y=﹣2x+6,
∴E(t,﹣2t+6),P(t,﹣t2+2t+3),
∴PH=﹣t2+2t+3,EH=﹣2t+6,
∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;
(3)如圖2,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,
∵D(1,4),B(﹣1,0),C(3,0),
∴BK=2,KC=2,
∴DK垂直平分BC,
∴BD=CD,
∴∠BDK=∠CDK,
∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,
∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,
∴∠CDK+∠DEQ=45°,即∠RNE=45°,
∵ER⊥DK,
∴∠NER=45°,
∴∠MEQ=∠MQE=45°,
∴QM=ME,
∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,
∴△DQT≌△ECH,
∴DT=EH,QT=CH,
∴ME=4﹣2(﹣2t+6),
QM=MT+QT=MT+CH=t﹣1+(3﹣t),
4﹣2(﹣2t+6)=t﹣1+(3﹣t),
解得:t=,
∴P(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠按用戶的月需求量(件)完成一種產(chǎn)品的生產(chǎn),其中.每件的售價(jià)為18萬元,每件的成本(萬元)是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與月需求量(件)成反比.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關(guān)系式(為常數(shù)),且得到了表中的數(shù)據(jù).
月份(月) | 1 | 2 |
成本(萬元/件) | 11 | 12 |
需求量(件/月) | 120 | 100 |
(1)求與滿足的關(guān)系式,請(qǐng)說明一件產(chǎn)品的利潤(rùn)能否是12萬元;
(2)求,并推斷是否存在某個(gè)月既無盈利也不虧損;
(3)在這一年12個(gè)月中,若第個(gè)月和第個(gè)月的利潤(rùn)相差最大,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+1交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B(4,0) ,與過A點(diǎn)的直線相交于另一點(diǎn)D(3,) ,過點(diǎn)D作DC⊥x軸,垂足為C.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P在線段OC上(不與點(diǎn)O,C重合),過P作PN⊥x軸,交直線AD于M,交拋物線于點(diǎn)N,連接CM,求△PCM 面積的最大值;
(3)若P 是x 軸正半軸上的一動(dòng)點(diǎn),設(shè)OP 的長(zhǎng)為t.是否存在t,使以點(diǎn)M,C,D,N 為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,則圖中陰影部分的面積為_________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺(tái)的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富.某班模擬開展“中國詩詞大賽”比賽,對(duì)全班同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“A優(yōu)秀”、“B一般”、“C較差”、“D良好”四個(gè)等級(jí),并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問題:
(1)本班有多少同學(xué)優(yōu)秀?
(2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖.
(3)學(xué)校預(yù)全面推廣這個(gè)比賽提升學(xué)生的文化素養(yǎng),估計(jì)該校3000人有多少人成績(jī)良好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決下列兩個(gè)問題:
(1)如圖1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.點(diǎn)P在直線EF上,直接寫出PA+PB的最小值,并在圖中標(biāo)出當(dāng)PA+PB取最小值時(shí)點(diǎn)P的位置;
解:PA+PB的最小值為 .
(2)如圖2.點(diǎn)M、N在∠BAC的內(nèi)部,請(qǐng)?jiān)凇?/span>BAC的內(nèi)部求作一點(diǎn)P,使得點(diǎn)P到∠BAC兩邊的距離相等,且使PM=PN.(尺規(guī)作圖,保留作圖痕跡,無需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點(diǎn)D,點(diǎn)E是BC延長(zhǎng)線上的一點(diǎn),且BD=DE.點(diǎn)G是線段BC的中點(diǎn),連結(jié)AG,交BD于點(diǎn)F,過點(diǎn)D作DH⊥BC,垂足為H.
(1)求證:△DCE為等腰三角形;
(2)若∠CDE=22.5°,DC=,求GH的長(zhǎng);
(3)探究線段CE,GH的數(shù)量關(guān)系并用等式表示,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測(cè)一座教學(xué)樓墻上的大型標(biāo)牌,測(cè)得標(biāo)牌下端D處的仰角為30°,然后他正對(duì)大樓方向前進(jìn)5m到達(dá)B處,又測(cè)得該標(biāo)牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標(biāo)牌的上端與樓房的頂端平齊.求此標(biāo)牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,DE是AB的垂直平分線,AD恰好平分∠BAC.若DE=1,則BC的長(zhǎng)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com