精英家教網 > 初中數學 > 題目詳情
(2005•重慶)已知拋物線y=-x2+2(k-1)x+k+2與x軸交于A、B兩點,且點A在x軸的負半軸上,點B在x軸的正半軸上.
(1)求實數k的取值范圍;
(2)設OA、OB的長分別為a、b,且a:b=1:5,求拋物線的解析式;
(3)在(2)的條件下,以AB為直徑的⊙D與y軸的正半軸交于P點,過P點作⊙D的切線交x軸于E點,求點E的坐標.
【答案】分析:(1)由于A、B分別在x軸的正負半軸上,由此可得出A、B兩點橫坐標的積應該是負數,即-(k+2)<0,由此可得出k的取值范圍;
(2)可根據OA、OB的比例關系設出A、B兩點的橫坐標(要注意A點在負半軸上),然后根據根與系數的關系即可得出一個關于k的方程組,進而可求出k的值,也就求出了拋物線的解析式;
(3)求E點的坐標就是求OE的長,已知了A、B的坐標可求出D的坐標,以及圓D的半徑長,如果連接DP,在直角三角形OPE中,可用射影定理得出DP2=OD•DE即r2=OD•DE,由此可求出DE的長,已知D的坐標,可據此求出E的坐標.
解答:解:(1)設點A(x1,0),B(x2,0)且滿足x1<0<x2
由題意可知x1x2=-(k+2)<0,即k>-2.

(2)∵a:b=1:5,設OA=a,即-x1=a.
則OB=5a,即x2=5a,a>0
,即
∴k=2a+1,
即5a2-2a-3=0,解得a1=1,(舍去)
∴k=3
∴拋物線的解析式為y=-x2+4x+5.

(3)由(2)可知,當-x2+4x+5=0時,可得x1=-1,x2=5.
即A(-1,0),B(5,0),
∴AB=6,則點D的坐標為(2,0)
當PE是⊙D的切線時,PE⊥PD
由Rt△DPO∽Rt△DEP可得PD2=OD•DE
即32=2×DE
∴DE=,OE=DE-OD=-2=,
故點E的坐標為(-,0).
點評:本題著重考查了待定系數法求二次函數解析式、二次函數與一元二次方程的關系、一元二次方程根與系數的關系、切線的性質等重要知識點,綜合性較強.
練習冊系列答案
相關習題

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2005•重慶)已知拋物線y=-x2+2(k-1)x+k+2與x軸交于A、B兩點,且點A在x軸的負半軸上,點B在x軸的正半軸上.
(1)求實數k的取值范圍;
(2)設OA、OB的長分別為a、b,且a:b=1:5,求拋物線的解析式;
(3)在(2)的條件下,以AB為直徑的⊙D與y軸的正半軸交于P點,過P點作⊙D的切線交x軸于E點,求點E的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省初中畢業(yè)生學業(yè)考試數學試卷(十一)(解析版) 題型:解答題

(2005•重慶)已知拋物線y=-x2+2(k-1)x+k+2與x軸交于A、B兩點,且點A在x軸的負半軸上,點B在x軸的正半軸上.
(1)求實數k的取值范圍;
(2)設OA、OB的長分別為a、b,且a:b=1:5,求拋物線的解析式;
(3)在(2)的條件下,以AB為直徑的⊙D與y軸的正半軸交于P點,過P點作⊙D的切線交x軸于E點,求點E的坐標.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《一元二次方程》(04)(解析版) 題型:填空題

(2005•重慶)已知方程3x2-9x+m=0的一個根是1,則m的值是   

查看答案和解析>>

科目:初中數學 來源:2010年中考新人教數學模擬試卷(A卷)(解析版) 題型:填空題

(2005•重慶)已知方程3x2-9x+m=0的一個根是1,則m的值是   

查看答案和解析>>

同步練習冊答案