【題目】如圖,在△ABC中,AB=AC,點D是BC邊上一點,且AD=BD,⊙O是△ACD的外接圓
(1)求證:直線AB是⊙O的切線;
(2)若AB=10,BC=16,求⊙O的半徑.
【答案】(1)詳見解析;(2)
【解析】
(1)連接AO并延長交⊙O于E,連接DE,根據(jù)各邊的關(guān)系,利用等量代換求出∠E=∠BAD,再根據(jù)直徑所對應(yīng)的的圓周角等于90°,所以∠E+∠DAE=90°,等量代換∠BAD+∠DAE=90°,即可證出.(2) 過A作AF⊥BC于F,利用相似三角形求出BD的長度,然后利用等腰三角形的三線合一性質(zhì)求出BF的長度,再根據(jù)勾股定理求出AF的長,最后利用三角函數(shù),根據(jù)比值關(guān)系求出AE的長,即可知道⊙O的半徑.
(1)證明:連接AO并延長交⊙O于E,連接DE,
∵AB=AC,AD=BD,
∴∠B=∠BAD,∠B=∠C,
∴∠C=∠E,
∴∠E=∠BAD,
∵AE是⊙O的直徑,
∴∠ADE=90°,
∴∠E+∠DAE=90°,
∴∠BAD+∠DAE=90°,
即∠BAE=90°,
∴直線AB是⊙O的切線;
(2)解:過A作AF⊥BC于F,
∵∠B=∠BAD,∠B=∠C,
∴∠BAD=∠C,
∵∠B=∠B,
∴△BAD∽△BCA,
∴=
∴BD==,
∴AD=BD=,
∵AB=AC,AF⊥BC,
∴BF=BC=8,
∴AF==6,
∵∠E=∠C=∠B,
∴sinE=sinB,
∴=,
∴AE=,
∴⊙O的半徑為÷2=.
即⊙O的半徑為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】亞洲文明對話大會召開期間,大批的大學(xué)生志愿者參與服務(wù)工作.某大學(xué)計劃組織本校全體志愿者統(tǒng)一乘車去會場,若單獨調(diào)配36座新能源客車若干輛,則有2人沒有座位;若只調(diào)配22座新能源客車,則用車數(shù)量將增加4輛,并空出2個座位.
(1)計劃調(diào)配36座新能源客車多少輛?該大學(xué)共有多少名志愿者?
(2)若同時調(diào)配36座和22座兩種車型,既保證每人有座,又保證每車不空座,則兩種車型各需多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝中華人民共和國七十周年華誕,某校舉行書畫大賽,準(zhǔn)備購買甲、乙兩種文具,獎勵在活動中表現(xiàn)優(yōu)秀的師生.已知購買個甲種文具、個乙種文具共需花費元;購買個甲種文具、個乙種文具共需花費元.
(1)求購買一個甲種文具、一個乙種文具各需多少元?
(2)若學(xué)校計劃購買這兩種文具共個,投入資金不少于元又不多于元,設(shè)購買甲種文具個,求有多少種購買方案?
(3)設(shè)學(xué)校投入資金元,在(2)的條件下,哪種購買方案需要的資金最少?最少資金是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在正方形ABCD中,AB=3,E是邊BC上一個動點(點E不與點B,點C重合),連接AE,點H是BC延長線上一點.過點B作BF⊥AE,交AE于點G,交DC于點F.
(1)求證:AE=BF;
(2)過點E作EM⊥AE,交∠DCH的平分線于點M,連接FM,判斷四邊形BFME的形狀,并說明理由;
(3)在(2)的條件下,∠EMC的正弦值為,求四邊形AGFD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“倡導(dǎo)全民閱讀”“推動國民素質(zhì)和社會文明程度顯著提高”已成為“十三五”時期的重要工作.某中學(xué)在全校學(xué)生中隨機抽取了部分學(xué)生對2018年度閱讀情況進行問卷調(diào)查,并將收集的數(shù)據(jù)統(tǒng)計如表
數(shù)量/本 | 15 | 11 | 8 | 4 | 3 | 2 |
人數(shù) | 80 | 60 | 50 | 100 | 40 | 70 |
根據(jù)表中的信息判斷,下列結(jié)論錯誤的是( 。
A. 該校參與調(diào)查的學(xué)生人數(shù)為400人
B. 該校學(xué)生2018年度閱讀書數(shù)量的中位數(shù)為4本
C. 該校學(xué)生2018年度閱讀書數(shù)量的眾數(shù)為4本
D. 該校學(xué)生2018年平均每人閱讀8本書
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)(k為常數(shù),k>0)的圖象與過原點的O的直線相交于A,B兩點,點M是第一象限內(nèi)雙曲線上的動點(點M在點A的左側(cè)),直線AM分別交x軸,y軸于C,D兩點,連接BM分別交x軸,y軸于點E,F.現(xiàn)有以下四個結(jié)論:①△ODM與△OCA的面積相等;②若BM⊥AM于點M,則∠MBA=30°;③若M點的橫坐標(biāo)為1,△OAM為等邊三角形,則;④若,則MD=2MA.其中正確的結(jié)論的序號是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】齊齊哈爾市教育局想知道某校學(xué)生對扎龍自然保護區(qū)的了解程度,在該校隨機抽取了部分學(xué)生進行問卷,問卷有以下四個選項:A.十分了解;B.了解較多:C.了解較少:D.不了解(要求:每名被調(diào)查的學(xué)生必選且只能選擇一項).現(xiàn)將調(diào)查的結(jié)果繪制成兩幅不完整的統(tǒng)計圖.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次被抽取的學(xué)生共有_______名;
(2)請補全條形圖;
(3)扇形圖中的選項“C.了解較少”部分所占扇形的圓心角的大小為_______°;
(4)若該校共有名學(xué)生,請你根據(jù)上述調(diào)查結(jié)果估計該校對于扎龍自然保護區(qū)“十分了解”和“了解較多”的學(xué)生共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】岳陽市整治農(nóng)村“空心房”新模式,獲評全國改革開放40年地方改革創(chuàng)新40案例.據(jù)了解,我市某地區(qū)對轄區(qū)內(nèi)“空心房”進行整治,騰退土地1200畝用于復(fù)耕和改造,其中復(fù)耕土地面積比改造土地面積多600畝.
(1)求復(fù)耕土地和改造土地面積各為多少畝?
(2)該地區(qū)對需改造的土地進行合理規(guī)劃,因地制宜建設(shè)若干花卉園和休閑小廣場,要求休閑小廣場總面積不超過花卉園總面積的,求休閑小廣場總面積最多為多少畝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣2x+8的圖象與坐標(biāo)軸交于A,B兩點,并與反比例函數(shù)的圖象相切于點C.
(1)切點C的坐標(biāo)是 ;
(2)若點M為線段BC的中點,將一次函數(shù)y=﹣2x+8的圖象向左平移m(m>0)個單位后,點C和點M平移后的對應(yīng)點同時落在另一個反比例函數(shù)的圖象上時,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com