點(diǎn)(-1,-2)在下列哪條直線上( 。
分析:將點(diǎn)(-1,-2)分別代入解析式,等式成立者即為正確答案.
解答:解:A、將點(diǎn)(-1,-2)代入y=2x得,-2=2×(-1),故本選項(xiàng)正確;
B、將點(diǎn)(-1,-2)代入y=-2x+1得,-2≠-2×(-1)+1,故本選項(xiàng)錯(cuò)誤;
C、將點(diǎn)(-1,-2)代入y=-2x得,-2≠-2×(-1),故本選項(xiàng)錯(cuò)誤;
D、將點(diǎn)(-1,-2)代入y=-
1
2
x得,-2≠-
1
2
×(-1),故本選項(xiàng)錯(cuò)誤.
故選A.
點(diǎn)評:本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,要知道一次函數(shù)圖象上的點(diǎn)符合函數(shù)解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖所示,在4×4的菱形斜網(wǎng)格圖中(每一個(gè)小菱形的邊長為1,有一個(gè)角是60°),菱形ABCD的邊長為2,E是AD的中點(diǎn),按CE將菱形ABCD剪成①、②兩部分,用這兩部分可以分別拼成直角三角形、等腰梯形、矩形,要求所拼成圖形的頂點(diǎn)均落在格點(diǎn)上.
(1)在下面的菱形斜網(wǎng)格中畫出示意圖;

(2)判斷所拼成的三種圖形的面積(s)、周長(l)的大小關(guān)系(用“=”、“>”或“<”連接):
面積關(guān)系是
;周長關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=-x2+4x-3與x軸相交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)坐標(biāo);
(2)在下面的直角坐標(biāo)系內(nèi)畫出此拋物線的簡圖,并根據(jù)簡圖寫出當(dāng)x取何值時(shí),函數(shù)值y大于零;
(3)確定此拋物線與直線y=-2x+6公共點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(41):2.7 最大面積是多少(解析版) 題型:解答題

已知:拋物線y=-x2+4x-3與x軸相交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)坐標(biāo);
(2)在下面的直角坐標(biāo)系內(nèi)畫出此拋物線的簡圖,并根據(jù)簡圖寫出當(dāng)x取何值時(shí),函數(shù)值y大于零;
(3)確定此拋物線與直線y=-2x+6公共點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(41):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

已知:拋物線y=-x2+4x-3與x軸相交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)坐標(biāo);
(2)在下面的直角坐標(biāo)系內(nèi)畫出此拋物線的簡圖,并根據(jù)簡圖寫出當(dāng)x取何值時(shí),函數(shù)值y大于零;
(3)確定此拋物線與直線y=-2x+6公共點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(41):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:拋物線y=-x2+4x-3與x軸相交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左側(cè)),頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)坐標(biāo);
(2)在下面的直角坐標(biāo)系內(nèi)畫出此拋物線的簡圖,并根據(jù)簡圖寫出當(dāng)x取何值時(shí),函數(shù)值y大于零;
(3)確定此拋物線與直線y=-2x+6公共點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案