解:原不等式兩邊同乘以30,得:15(3x-1)-10(4x-2)≥6(6x-3)-39,
化簡得:-31x≥-62,
解得:x≤2,(5分)
設y=2|x-1|+|x+4|,
(1)當x≤-4時,y=-2(x-1)-(x+4)=-3x-2
所以,y的最小值都為(-3)×(-4)-2=10,此時x=-4;(10分)
(2)當-4≤x≤1時,y=-2(x-1)-(x+4)=-3x-2
所以,y的最小值為5,此時x=1;(15分)
(3)當1≤x≤2時,y=2(x-1)+(x+4)=3x+2
所以,y的最小值為5,此時x=1.(20分)
綜上所述,2|x-1|+|x+4|的最小值為5,在x=1時取得.(25分)
分析:首先解出不等式的解集,再根據所求代數(shù)式的絕對值確定x的取值范圍,根據x的取值范圍確定代數(shù)式的最小值即可.
點評:本題考查了解絕對值代數(shù)式最值及不等式的解法.解帶絕對值代數(shù)式的最值是本題的一個難點.