【題目】已知,點(diǎn)P是等邊△ABC中一點(diǎn),線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°到AQ,連接PQ、QC.
(1)求證:PB=QC;
(2)若∠APB=150°,PA=9,PB=12,求PC的長(zhǎng)度.
【答案】(1)詳見(jiàn)解析;(2)PC=15
【解析】
(1)利用旋轉(zhuǎn)的性質(zhì)找到證明△BAP≌△CAQ,,然后利用全等三角形的性質(zhì)即可證明;
(2)利用等邊三角形的性質(zhì)和勾股定理解答即可.
(1)證明:∵線段AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°到AQ,
∴AP=AQ,∠PAQ=60°,
∴△APQ是等邊三角形,
∴∠PAC+∠CAQ=60°,
∵△ABC是等邊三角形,
∴∠BAP+∠PAC=60°,AB=AC,
∴∠BAP=∠CAQ,
在△BAP和△CAQ中,BA=CA,∠BAP=∠CAQ,AP=AQ
∴△BAP≌△CAQ(SAS);
∴PB=QC;
(2)解:∵△APQ是等邊三角形,
∴AP=PQ=9,∠AQP=60°,
∵∠APB=150°,
∴∠PQC=150°-60°=90°,
∵PB=QC=12,
∴△PQC是直角三角形,
∴PC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)1000名學(xué)生參加了“環(huán)保知識(shí)競(jìng)賽”,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問(wèn)題:
成績(jī)分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x<90 | b | c |
合計(jì) | ■ | 1 |
(1)寫出,,的值;
(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字1,2,3的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請(qǐng)你用畫樹(shù)形圖或列表的方法,求下列事件的概率:
(1)兩次取出小球上的數(shù)字相同的概率;
(2)兩次取出小球上的數(shù)字之和大于3的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為正方形ABCD的中心,BE平分∠DBC交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使FC=EC,連結(jié)DF交BE的延長(zhǎng)線于點(diǎn)H,連結(jié)OH交DC于點(diǎn)G,連結(jié)HC.則以下四個(gè)結(jié)論中:①OH∥BF,②GH=BC,③BF=2OD,④∠CHF=45°.正確結(jié)論的個(gè)數(shù)為( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】光明電器超市銷售每臺(tái)進(jìn)價(jià)分別為190元、160元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 2臺(tái) | 6臺(tái) | 1840元 |
第二周 | 5臺(tái) | 7臺(tái) | 2840 元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入-進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若超市準(zhǔn)備再采購(gòu)這兩種型號(hào)的電風(fēng)扇共40臺(tái),這40臺(tái)電風(fēng)扇全部售出后,若利潤(rùn)不低于2660元,求A種型號(hào)的電風(fēng)扇至少要采購(gòu)多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn) 經(jīng)過(guò)點(diǎn)A(﹣1,0),B(5,﹣6),C(6,0)
(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),試指出△QAB為等腰三角形的點(diǎn)Q一共有幾個(gè)?并請(qǐng)求出其中某一個(gè)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 A(0,a),B(b,0),a、b 滿足.a+b=4,a-b= 12,
(1)求 a、b 的值;
(2)在坐標(biāo)軸上找一點(diǎn) D,使三角形 ABD 的面積等于三角形 OAB 面積的一半, 求 D 點(diǎn)坐標(biāo);
(3)作∠BAO 平分線與∠ABC 平分線 BE 的反向延長(zhǎng)線交于 P 點(diǎn),求∠P 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,點(diǎn)D、E分別是邊AB、AC上的兩點(diǎn)(點(diǎn)D不與點(diǎn)A、 點(diǎn)B重合),且DE∥BC,以DE為一邊,在四邊形DBCE的內(nèi)部作正方形DEFG,已知AB=AC=5,BC=6.
(1)試求△ABC的面積;
(2)當(dāng)GF與BC重合時(shí),求正方形DEFG的邊長(zhǎng);
(3)若BG的長(zhǎng)度等于正方形DEFG的邊長(zhǎng),試求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知AB∥CD,求證:∠EGF=∠AEG+∠CFG
(2)如圖2,已知AB∥CD,∠AEF與∠CFE的平分線交于點(diǎn)G.猜想∠G的度數(shù)。證明你的猜想
(3)如圖3,已知AB∥CD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∠G=95°,求∠H的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com