【題目】閱讀探索題:
(1)如圖1,OP是∠MON的平分線,以O為圓心任意長(zhǎng)為半徑作弧,分別交射線ON、OM于C、B兩點(diǎn),在射線OP上任取一點(diǎn)A(點(diǎn)O除外),連接AB、AC.求證:△AOB≌△AOC.
(2)請(qǐng)你參考以上方法,解答下列問題:
如圖2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,試判斷BC和AC、AD之間的數(shù)量關(guān)系并證明.
【答案】(1)證明見解析(2)證明見解析
【解析】
1)根據(jù)以O為圓心任意長(zhǎng)為半徑作弧,交射線ON,OM為C,B兩點(diǎn),OP是∠MON的平分線,運(yùn)用SAS判定△AOB≌△AOC即可;
(2)先截取CE=CA,連接DE,根據(jù)SAS判定△CAD≌△CED,得出AD=DE,∠A=∠CED=60°,AC=CE,進(jìn)而得出結(jié)論BC=AC+AD;
(1)
證明:在△AOB和△AOC中,
∴△AOB≌△AOC(SAS).
(2)
在CB上截取CE=CA,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
在△ACD和△ECD中,
∴△ACD≌△ECD(SAS),
∴∠CAD=∠CED=60°,
∵∠ACB=90°,
∴∠B=30°,
∴∠EDB=30°,
即∠EDB=∠B,
∴DE=EB,
∵BC=CE+BE,
∴BC=AC+DE,
∴BC=AC+AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長(zhǎng)為4米,求新傳送帶AC的長(zhǎng)及新、原傳送帶觸地點(diǎn)之間AB的長(zhǎng).(結(jié)果精確到0.1米)參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的函數(shù)y=(a+2)x2﹣(2a﹣1)x+a﹣2的圖象與坐標(biāo)軸有兩個(gè)交點(diǎn),則a的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,O為矩形ABCD的中心,以D為圓心1為半徑作⊙D,P為⊙D上的一個(gè)動(dòng)點(diǎn),連接AP、OP,則△AOP面積的最大值為( 。
A. 4 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市第一次用3000元購進(jìn)某種干果銷售,第二次又調(diào)撥9000元購進(jìn)該種干果,但第二次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%,購進(jìn)干果數(shù)量是第一次的2倍還多300千克,如果超市先按每千克9元的價(jià)格出售,當(dāng)大部分干果出售后,最后的600千克按原售價(jià)的7折售完,超市兩次銷售這種干果共盈利________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D是AC的中點(diǎn),點(diǎn)E在BC的延長(zhǎng)線上,點(diǎn)F在AB上,.若AB=5,則BE+BF的長(zhǎng)度為( )
A.7.5B.8C.8.5D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
(1)作出關(guān)于軸對(duì)稱的,并寫出三個(gè)頂點(diǎn)的坐標(biāo);
(2)請(qǐng)計(jì)算的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(解決問題)如圖1,在中,,于點(diǎn).點(diǎn)是邊上任意一點(diǎn),過點(diǎn)作,,垂足分別為點(diǎn),點(diǎn).
(1)若,,則的面積是______,______.
(2)猜想線段,,的數(shù)量關(guān)系,并說明理由.
(3)(變式探究)如圖2,在中,若,點(diǎn)是內(nèi)任意一點(diǎn),且,,,垂足分別為點(diǎn),點(diǎn),點(diǎn),求的值.
(4)(拓展延伸)如圖3,將長(zhǎng)方形沿折疊,使點(diǎn)落在點(diǎn)上,點(diǎn)落在點(diǎn)處,點(diǎn)為折痕上的任意一點(diǎn),過點(diǎn)作,,垂足分別為點(diǎn),點(diǎn).若,,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com