解:(1)如圖,∵x
1、x
2(x
1<x
2)是方程(x+1)(x-3)=0的兩個根,
∴x
1=-1,x
2=3.
∵在平面直角坐標(biāo)系中拋物線y=x
2+bx+c與x軸交于A(x
1,0)、B(x
2,0)兩點,
∴A(-1,0)、B(3,0),
把它們代入拋物線解析式,得

,
解得,

拋物線的解析式是:y=x
2-2x-3.
當(dāng)x=0時,y=-3,
∴C(3,0).
綜上所述,拋物線的解析式是y=x
2-2x-3,點C的坐標(biāo)是(0,-3);
(2)由(1)知B(3,0),C(0,-3),則易求直線BC的解析式是:y=x-3.
故設(shè)D(x,x-3)(0≤x≤3),則E(x,x
2-2x-3)
∴DE=(x-3)-(x
2-2x-3)=-x
2+3x=-(x-

)
2+

;
∴當(dāng)x=

時,DE的最大值為

.
(3)答:不存在.
由(2)知DE取最大值時,DE=

,E(

,-

),D(

,-

)
∴DF=

,BF=OB-OF=

.
設(shè)在拋物線x軸下方存在點P,使以D,F(xiàn),B,P為頂點的四邊形是平行四邊形,
則BP∥DF,BF∥PD.
∴P
1(0,-

)或P
2(3,-

)
當(dāng)P
1(0,-

)時,由(1)知y=x
2-2x-3=-3≠-

,
∴P
1不在拋物線上.
當(dāng)P
2(3,-

)時,由(1)知y=x
2-2x-3=0≠-

,
∴P
2不在拋物線上.
綜上所述:拋物線x軸下方不存在點P,使以D,F(xiàn),B,P為頂點的四邊形是平行四邊形.
分析:(1)先根據(jù)直線的解析式求出A、B兩點的坐標(biāo),然后將A、B的坐標(biāo)代入拋物線中即可求出二次函數(shù)的解析式.進而可根據(jù)拋物線的解析式求出C點的坐標(biāo).
(2)DE的長實際是直線BC的函數(shù)值與拋物線的函數(shù)值的差,據(jù)此可得出一個關(guān)于DE的長和F點橫坐標(biāo)的函數(shù)關(guān)系式,可根據(jù)函數(shù)的性質(zhì)來求出DE的最大值.
(3)根據(jù)(2)的結(jié)果可確定出F,D的坐標(biāo),要使以D,F(xiàn),B,P為頂點的四邊形是平行四邊形,必須滿足的條件是MP∥=BF,那么只需將D點的坐標(biāo)向左或向右平移BF長個單位即可得出P點的坐標(biāo),然后將得出的P點坐標(biāo)代入拋物線的解析式中,即可判斷出是否存在符合條件的P點.
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、平行四邊形的判定和性質(zhì)等知識點,綜合性強,考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.(2)中弄清線段DE長度的函數(shù)意義是解題的關(guān)鍵.